Learning of Position-Invariant Object Representation Across Attention Shifts

Selective attention shift can help neural networks learn invariance. We describe a method that can produce a network with invariance to changes in visual input caused by attention shifts. Training of the network is controlled by signals associated with attention shifting. A temporal perceptual stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Muhua, Clark, James J.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selective attention shift can help neural networks learn invariance. We describe a method that can produce a network with invariance to changes in visual input caused by attention shifts. Training of the network is controlled by signals associated with attention shifting. A temporal perceptual stability constraint is used to drive the output of the network towards remaining constant across temporal sequences of attention shifts. We use a four-layer neural network model to perform the position-invariant extraction of local features and temporal integration of attention-shift invariant presentations of objects. We present results on both simulated data and real images, to demonstrate that our network can acquire position invariance across a sequence of attention shifts.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30572-9_5