Finding k Disjoint Triangles in an Arbitrary Graph
We consider the NP-complete problem of deciding whether an input graph on n vertices has k vertex-disjoint copies of a fixed graph H. For H=K3 (the triangle) we give an O(22klog k + 1.869kn2) algorithm, and for general H an O(2k|H|logk + 2k|H|log |H|n|H|) algorithm. We introduce a preprocessing (ker...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the NP-complete problem of deciding whether an input graph on n vertices has k vertex-disjoint copies of a fixed graph H. For H=K3 (the triangle) we give an O(22klog k + 1.869kn2) algorithm, and for general H an O(2k|H|logk + 2k|H|log |H|n|H|) algorithm. We introduce a preprocessing (kernelization) technique based on crown decompositions of an auxiliary graph. For H=K3 this leads to a preprocessing algorithm that reduces an arbitrary input graph of the problem to a graph on O(k3) vertices in polynomial time. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30559-0_20 |