Support vector machines for classification in remote sensing
Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural networ...
Gespeichert in:
Veröffentlicht in: | International journal of remote sensing 2005-03, Vol.26 (5), p.1007-1011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 5 |
container_start_page | 1007 |
container_title | International journal of remote sensing |
container_volume | 26 |
creator | Pal, M. Mather, P. M. |
description | Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural network (ANN) methods in terms of classification accuracy. The two land cover classification experiments use multispectral (Landsat-7 ETM+) and hyperspectral (DAIS) data, respectively, for test areas in eastern England and central Spain. Our results show that the SVM achieves a higher level of classification accuracy than either the ML or the ANN classifier, and that the SVM can be used with small training datasets and high-dimensional data. |
doi_str_mv | 10.1080/01431160512331314083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16468991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29607555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-6d9aea695225eb87c146a16480e7b5ec6de58ceea8c03410abaf6348142d584d3</originalsourceid><addsrcrecordid>eNqFkMtKxEAQRRtRcHz8gYtsdBftSj_SEUFEfIHgQl2Hmk5FW5L02N3j4--NzIibQVdFwTm3isvYHvBD4IYfcZACQHMFhRAgQHIj1tgEhNa5qjiss8k3ko8MbLKtGF8457pU5YSd3M9nMx9S9kY2-ZD1aJ_dQDFrx8V2GKNrncXk_JC5IQvU-0RZpCG64WmHbbTYRdpdzm32eHnxcH6d395d3Zyf3eZWGpVy3VRIqCtVFIqmprQgNYKWhlM5VWR1Q8pYIjSWCwkcp9hqIQ3IolFGNmKbHSxyZ8G_zimmunfRUtfhQH4e66LSvFRKjaBcgDb4GAO19Sy4HsNnDbz-rqpeVdWo7S_zMVrs2oCDdfHX1VKbqoKRO15wbhjr6fHdh66pE352PvxIqw7U6SON8um_svjzzS8gDY7_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29607555</pqid></control><display><type>article</type><title>Support vector machines for classification in remote sensing</title><source>Taylor & Francis Online</source><creator>Pal, M. ; Mather, P. M.</creator><creatorcontrib>Pal, M. ; Mather, P. M.</creatorcontrib><description>Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural network (ANN) methods in terms of classification accuracy. The two land cover classification experiments use multispectral (Landsat-7 ETM+) and hyperspectral (DAIS) data, respectively, for test areas in eastern England and central Spain. Our results show that the SVM achieves a higher level of classification accuracy than either the ML or the ANN classifier, and that the SVM can be used with small training datasets and high-dimensional data.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160512331314083</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics</subject><ispartof>International journal of remote sensing, 2005-03, Vol.26 (5), p.1007-1011</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-6d9aea695225eb87c146a16480e7b5ec6de58ceea8c03410abaf6348142d584d3</citedby><cites>FETCH-LOGICAL-c485t-6d9aea695225eb87c146a16480e7b5ec6de58ceea8c03410abaf6348142d584d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01431160512331314083$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01431160512331314083$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16468991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pal, M.</creatorcontrib><creatorcontrib>Mather, P. M.</creatorcontrib><title>Support vector machines for classification in remote sensing</title><title>International journal of remote sensing</title><description>Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural network (ANN) methods in terms of classification accuracy. The two land cover classification experiments use multispectral (Landsat-7 ETM+) and hyperspectral (DAIS) data, respectively, for test areas in eastern England and central Spain. Our results show that the SVM achieves a higher level of classification accuracy than either the ML or the ANN classifier, and that the SVM can be used with small training datasets and high-dimensional data.</description><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxEAQRRtRcHz8gYtsdBftSj_SEUFEfIHgQl2Hmk5FW5L02N3j4--NzIibQVdFwTm3isvYHvBD4IYfcZACQHMFhRAgQHIj1tgEhNa5qjiss8k3ko8MbLKtGF8457pU5YSd3M9nMx9S9kY2-ZD1aJ_dQDFrx8V2GKNrncXk_JC5IQvU-0RZpCG64WmHbbTYRdpdzm32eHnxcH6d395d3Zyf3eZWGpVy3VRIqCtVFIqmprQgNYKWhlM5VWR1Q8pYIjSWCwkcp9hqIQ3IolFGNmKbHSxyZ8G_zimmunfRUtfhQH4e66LSvFRKjaBcgDb4GAO19Sy4HsNnDbz-rqpeVdWo7S_zMVrs2oCDdfHX1VKbqoKRO15wbhjr6fHdh66pE352PvxIqw7U6SON8um_svjzzS8gDY7_</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Pal, M.</creator><creator>Mather, P. M.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050301</creationdate><title>Support vector machines for classification in remote sensing</title><author>Pal, M. ; Mather, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-6d9aea695225eb87c146a16480e7b5ec6de58ceea8c03410abaf6348142d584d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, M.</creatorcontrib><creatorcontrib>Mather, P. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, M.</au><au>Mather, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support vector machines for classification in remote sensing</atitle><jtitle>International journal of remote sensing</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>26</volume><issue>5</issue><spage>1007</spage><epage>1011</epage><pages>1007-1011</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural network (ANN) methods in terms of classification accuracy. The two land cover classification experiments use multispectral (Landsat-7 ETM+) and hyperspectral (DAIS) data, respectively, for test areas in eastern England and central Spain. Our results show that the SVM achieves a higher level of classification accuracy than either the ML or the ANN classifier, and that the SVM can be used with small training datasets and high-dimensional data.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01431160512331314083</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2005-03, Vol.26 (5), p.1007-1011 |
issn | 0143-1161 1366-5901 |
language | eng |
recordid | cdi_pascalfrancis_primary_16468991 |
source | Taylor & Francis Online |
subjects | Applied geophysics Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics |
title | Support vector machines for classification in remote sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20vector%20machines%20for%20classification%20in%20remote%20sensing&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Pal,%20M.&rft.date=2005-03-01&rft.volume=26&rft.issue=5&rft.spage=1007&rft.epage=1011&rft.pages=1007-1011&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160512331314083&rft_dat=%3Cproquest_pasca%3E29607555%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29607555&rft_id=info:pmid/&rfr_iscdi=true |