Support vector machines for classification in remote sensing
Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural networ...
Gespeichert in:
Veröffentlicht in: | International journal of remote sensing 2005-03, Vol.26 (5), p.1007-1011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Support vector machines (SVM) represent a promising development in machine learning research that is not widely used within the remote sensing community. This paper reports the results of two experiments in which multi-class SVMs are compared with maximum likelihood (ML) and artificial neural network (ANN) methods in terms of classification accuracy. The two land cover classification experiments use multispectral (Landsat-7 ETM+) and hyperspectral (DAIS) data, respectively, for test areas in eastern England and central Spain. Our results show that the SVM achieves a higher level of classification accuracy than either the ML or the ANN classifier, and that the SVM can be used with small training datasets and high-dimensional data. |
---|---|
ISSN: | 0143-1161 1366-5901 |
DOI: | 10.1080/01431160512331314083 |