Detection and estimation of improper complex random signals

Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2005-01, Vol.51 (1), p.306-312
Hauptverfasser: Schreier, P.J., Scharf, L.L., Mullis, C.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 1
container_start_page 306
container_title IEEE transactions on information theory
container_volume 51
creator Schreier, P.J.
Scharf, L.L.
Mullis, C.T.
description Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It produces two sets of eigenvalues and improper observable coordinates. We then use the K-L expansion to solve the problems of detection and estimation of improper complex random signals in additive white Gaussian noise. We derive a general result comparing the performance of conventional processing, which ignores complementary covariances, with processing that takes these into account. In particular, for the detection and estimation problems considered, we find that the performance gain, as measured by deflection and mean-squared error (MSE), respectively, can be as large as a factor of 2. In a communications example, we show how this finding generalizes the result that coherent processing enjoys a 3-dB gain over noncoherent processing.
doi_str_mv 10.1109/TIT.2004.839538
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_16447302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1377508</ieee_id><sourcerecordid>774136531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-bb97adac91dc76b56b0a2ce3cf217d5d713bae908d30705403e7c73f326e6dc53</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKdnD16KoJ665WeT4Enmr8HAyzyHNH2VjrapzQb635vawcCDp8cjn_fyfR-ELgmeEYL1fL1czyjGfKaYFkwdoQkRQqY6E_wYTTAmKtWcq1N0FsImtlwQOkH3j7AFt618m9i2SCBsq8b-tr5MqqbrfQd94nzT1fCV9JHxTRKqj9bW4RydlLHAxb5O0fvz03rxmq7eXpaLh1XqmCLbNM-1tIV1mhROZrnIcmypA-ZKSmQhCklYbkFjVTAsseCYgXSSlYxmkBVOsCm6G_fGNJ-7GNE0VXBQ17YFvwtG6YwyLpSK5O2_JFXxcEEG8PoPuPG7fjjKEC10zKGGf-cj5HofQg-l6fpop_82BJvBuYnOzeDcjM7jxM1-rQ3O1mX05apwGMs4lwzTyF2NXAUAh2cmpcCK_QDiW4ki</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195907085</pqid></control><display><type>article</type><title>Detection and estimation of improper complex random signals</title><source>IEEE Electronic Library (IEL)</source><creator>Schreier, P.J. ; Scharf, L.L. ; Mullis, C.T.</creator><creatorcontrib>Schreier, P.J. ; Scharf, L.L. ; Mullis, C.T.</creatorcontrib><description>Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It produces two sets of eigenvalues and improper observable coordinates. We then use the K-L expansion to solve the problems of detection and estimation of improper complex random signals in additive white Gaussian noise. We derive a general result comparing the performance of conventional processing, which ignores complementary covariances, with processing that takes these into account. In particular, for the detection and estimation problems considered, we find that the performance gain, as measured by deflection and mean-squared error (MSE), respectively, can be as large as a factor of 2. In a communications example, we show how this finding generalizes the result that coherent processing enjoys a 3-dB gain over noncoherent processing.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2004.839538</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive white noise ; Applied sciences ; Australia ; Codes ; Coherence ; Deflection ; Detection ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues ; Eigenvalues and eigenfunctions ; Error analysis ; Error detection ; estimation ; Exact sciences and technology ; Gain ; Gain measurement ; Gaussian ; improper complex random signal ; Information technology ; Information, signal and communications theory ; Karhunen-LoÈve (K-L) expansion ; nonstationary process ; Object detection ; Particle measurements ; Performance gain ; Probability ; Random signals ; Signal analysis ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; widely linear transformations</subject><ispartof>IEEE transactions on information theory, 2005-01, Vol.51 (1), p.306-312</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-bb97adac91dc76b56b0a2ce3cf217d5d713bae908d30705403e7c73f326e6dc53</citedby><cites>FETCH-LOGICAL-c381t-bb97adac91dc76b56b0a2ce3cf217d5d713bae908d30705403e7c73f326e6dc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1377508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1377508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16447302$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schreier, P.J.</creatorcontrib><creatorcontrib>Scharf, L.L.</creatorcontrib><creatorcontrib>Mullis, C.T.</creatorcontrib><title>Detection and estimation of improper complex random signals</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It produces two sets of eigenvalues and improper observable coordinates. We then use the K-L expansion to solve the problems of detection and estimation of improper complex random signals in additive white Gaussian noise. We derive a general result comparing the performance of conventional processing, which ignores complementary covariances, with processing that takes these into account. In particular, for the detection and estimation problems considered, we find that the performance gain, as measured by deflection and mean-squared error (MSE), respectively, can be as large as a factor of 2. In a communications example, we show how this finding generalizes the result that coherent processing enjoys a 3-dB gain over noncoherent processing.</description><subject>Additive white noise</subject><subject>Applied sciences</subject><subject>Australia</subject><subject>Codes</subject><subject>Coherence</subject><subject>Deflection</subject><subject>Detection</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>estimation</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Gain measurement</subject><subject>Gaussian</subject><subject>improper complex random signal</subject><subject>Information technology</subject><subject>Information, signal and communications theory</subject><subject>Karhunen-LoÈve (K-L) expansion</subject><subject>nonstationary process</subject><subject>Object detection</subject><subject>Particle measurements</subject><subject>Performance gain</subject><subject>Probability</subject><subject>Random signals</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>widely linear transformations</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM9LwzAUx4MoOKdnD16KoJ665WeT4Enmr8HAyzyHNH2VjrapzQb635vawcCDp8cjn_fyfR-ELgmeEYL1fL1czyjGfKaYFkwdoQkRQqY6E_wYTTAmKtWcq1N0FsImtlwQOkH3j7AFt618m9i2SCBsq8b-tr5MqqbrfQd94nzT1fCV9JHxTRKqj9bW4RydlLHAxb5O0fvz03rxmq7eXpaLh1XqmCLbNM-1tIV1mhROZrnIcmypA-ZKSmQhCklYbkFjVTAsseCYgXSSlYxmkBVOsCm6G_fGNJ-7GNE0VXBQ17YFvwtG6YwyLpSK5O2_JFXxcEEG8PoPuPG7fjjKEC10zKGGf-cj5HofQg-l6fpop_82BJvBuYnOzeDcjM7jxM1-rQ3O1mX05apwGMs4lwzTyF2NXAUAh2cmpcCK_QDiW4ki</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Schreier, P.J.</creator><creator>Scharf, L.L.</creator><creator>Mullis, C.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Detection and estimation of improper complex random signals</title><author>Schreier, P.J. ; Scharf, L.L. ; Mullis, C.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-bb97adac91dc76b56b0a2ce3cf217d5d713bae908d30705403e7c73f326e6dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Additive white noise</topic><topic>Applied sciences</topic><topic>Australia</topic><topic>Codes</topic><topic>Coherence</topic><topic>Deflection</topic><topic>Detection</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>estimation</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Gain measurement</topic><topic>Gaussian</topic><topic>improper complex random signal</topic><topic>Information technology</topic><topic>Information, signal and communications theory</topic><topic>Karhunen-LoÈve (K-L) expansion</topic><topic>nonstationary process</topic><topic>Object detection</topic><topic>Particle measurements</topic><topic>Performance gain</topic><topic>Probability</topic><topic>Random signals</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>widely linear transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreier, P.J.</creatorcontrib><creatorcontrib>Scharf, L.L.</creatorcontrib><creatorcontrib>Mullis, C.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schreier, P.J.</au><au>Scharf, L.L.</au><au>Mullis, C.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and estimation of improper complex random signals</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2005-01</date><risdate>2005</risdate><volume>51</volume><issue>1</issue><spage>306</spage><epage>312</epage><pages>306-312</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It produces two sets of eigenvalues and improper observable coordinates. We then use the K-L expansion to solve the problems of detection and estimation of improper complex random signals in additive white Gaussian noise. We derive a general result comparing the performance of conventional processing, which ignores complementary covariances, with processing that takes these into account. In particular, for the detection and estimation problems considered, we find that the performance gain, as measured by deflection and mean-squared error (MSE), respectively, can be as large as a factor of 2. In a communications example, we show how this finding generalizes the result that coherent processing enjoys a 3-dB gain over noncoherent processing.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2004.839538</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2005-01, Vol.51 (1), p.306-312
issn 0018-9448
1557-9654
language eng
recordid cdi_pascalfrancis_primary_16447302
source IEEE Electronic Library (IEL)
subjects Additive white noise
Applied sciences
Australia
Codes
Coherence
Deflection
Detection
Detection, estimation, filtering, equalization, prediction
Eigenvalues
Eigenvalues and eigenfunctions
Error analysis
Error detection
estimation
Exact sciences and technology
Gain
Gain measurement
Gaussian
improper complex random signal
Information technology
Information, signal and communications theory
Karhunen-LoÈve (K-L) expansion
nonstationary process
Object detection
Particle measurements
Performance gain
Probability
Random signals
Signal analysis
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
widely linear transformations
title Detection and estimation of improper complex random signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20estimation%20of%20improper%20complex%20random%20signals&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Schreier,%20P.J.&rft.date=2005-01&rft.volume=51&rft.issue=1&rft.spage=306&rft.epage=312&rft.pages=306-312&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2004.839538&rft_dat=%3Cproquest_RIE%3E774136531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195907085&rft_id=info:pmid/&rft_ieee_id=1377508&rfr_iscdi=true