Detection and estimation of improper complex random signals
Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It pro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2005-01, Vol.51 (1), p.306-312 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonstationary complex random signals are in general improper (not circularly symmetric), which means that their complementary covariance is nonzero. Since the Karhunen-Loeve (K-L) expansion in its known form is only valid for proper processes, we derive the improper version of this expansion. It produces two sets of eigenvalues and improper observable coordinates. We then use the K-L expansion to solve the problems of detection and estimation of improper complex random signals in additive white Gaussian noise. We derive a general result comparing the performance of conventional processing, which ignores complementary covariances, with processing that takes these into account. In particular, for the detection and estimation problems considered, we find that the performance gain, as measured by deflection and mean-squared error (MSE), respectively, can be as large as a factor of 2. In a communications example, we show how this finding generalizes the result that coherent processing enjoys a 3-dB gain over noncoherent processing. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2004.839538 |