Evaluation of Comprehensive Learning Particle Swarm Optimizer

Particle Swarm Optimizer (PSO) is one of the evolutionary computation techniques based on swarm intelligence. Comprehensive Learning Particle Swarm Optimizer (CLPSO) is a variant of the original Particle Swarm Optimizer which uses a new learning strategy to make the particles have different learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liang, Jing J., Qin, A. Kai, Suganthan, Ponnuthurai Nagaratnam, Baskar, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle Swarm Optimizer (PSO) is one of the evolutionary computation techniques based on swarm intelligence. Comprehensive Learning Particle Swarm Optimizer (CLPSO) is a variant of the original Particle Swarm Optimizer which uses a new learning strategy to make the particles have different learning exemplars for different dimensions. This paper investigates the effects of learning proportion Pc in the CLPSO, showing that different Pc realizes different performance on different problems.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30499-9_34