Non-linear Dimensionality Reduction by Locally Linear Isomaps
Algorithms for nonlinear dimensionality reduction (NLDR) find meaningful hidden low-dimensional structures in a high-dimensional space. Current algorithms for NLDR are Isomaps, Local Linear Embedding and Laplacian Eigenmaps. Isomaps are able to reliably recover low-dimensional nonlinear structures i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Algorithms for nonlinear dimensionality reduction (NLDR) find meaningful hidden low-dimensional structures in a high-dimensional space. Current algorithms for NLDR are Isomaps, Local Linear Embedding and Laplacian Eigenmaps. Isomaps are able to reliably recover low-dimensional nonlinear structures in high-dimensional data sets, but suffer from the problem of short-circuiting, which occurs when the neighborhood distance is larger than the distance between the folds in the manifolds. We propose a new variant of Isomap algorithm based on local linear properties of manifolds to increase its robustness to short-circuiting. We demonstrate that the proposed algorithm works better than Isomap algorithm for normal, noisy and sparse data sets. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30499-9_161 |