Non-linear Dimensionality Reduction by Locally Linear Isomaps

Algorithms for nonlinear dimensionality reduction (NLDR) find meaningful hidden low-dimensional structures in a high-dimensional space. Current algorithms for NLDR are Isomaps, Local Linear Embedding and Laplacian Eigenmaps. Isomaps are able to reliably recover low-dimensional nonlinear structures i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saxena, Ashutosh, Gupta, Abhinav, Mukerjee, Amitabha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Algorithms for nonlinear dimensionality reduction (NLDR) find meaningful hidden low-dimensional structures in a high-dimensional space. Current algorithms for NLDR are Isomaps, Local Linear Embedding and Laplacian Eigenmaps. Isomaps are able to reliably recover low-dimensional nonlinear structures in high-dimensional data sets, but suffer from the problem of short-circuiting, which occurs when the neighborhood distance is larger than the distance between the folds in the manifolds. We propose a new variant of Isomap algorithm based on local linear properties of manifolds to increase its robustness to short-circuiting. We demonstrate that the proposed algorithm works better than Isomap algorithm for normal, noisy and sparse data sets.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30499-9_161