Human-Like Selective Attention Model with Reinforcement and Inhibition Mechanism

In this paper, we propose a trainable selective attention model that can not only inhibit an unwanted salient area but also reinforce an interesting area. The proposed model was implemented by the bottom-up saliency map model in conjunction with the top-down attention mechanism. The bottom-up salien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Choi, Sang-Bok, Ban, Sang-Woo, Lee, Minho
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a trainable selective attention model that can not only inhibit an unwanted salient area but also reinforce an interesting area. The proposed model was implemented by the bottom-up saliency map model in conjunction with the top-down attention mechanism. The bottom-up saliency map model generates a salient area, and human supervisor decides whether the selected salient area is inhibited or reinforced. The fuzzy adaptive resonance theory (Fuzzy-ART) network can generate an inhibit signal or a reinforcement signal so that the sequence of attention areas is modified to be a desired scan path. Computer simulation results show that the proposed model successfully generates the plausible scan path of salient region.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30499-9_106