Morozov, Ivanov and Tikhonov Regularization Based LS-SVMs
This paper contrasts three related regularization schemes for kernel machines using a least squares criterion, namely Tikhonov and Ivanov regularization and Morozov’s discrepancy principle. We derive the conditions for optimality in a least squares support vector machine context (LS-SVMs) where they...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper contrasts three related regularization schemes for kernel machines using a least squares criterion, namely Tikhonov and Ivanov regularization and Morozov’s discrepancy principle. We derive the conditions for optimality in a least squares support vector machine context (LS-SVMs) where they differ in the role of the regularization parameter. In particular, the Ivanov and Morozov scheme express the trade-off between data-fitting and smoothness in the trust region of the parameters and the noise level respectively which both can be transformed uniquely to an appropriate regularization constant for a standard LS-SVM. This insight is employed to tune automatically the regularization constant in an LS-SVM framework based on the estimated noise level, which can be obtained by using a nonparametric technique as e.g. the differogram estimator. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30499-9_189 |