Morozov, Ivanov and Tikhonov Regularization Based LS-SVMs

This paper contrasts three related regularization schemes for kernel machines using a least squares criterion, namely Tikhonov and Ivanov regularization and Morozov’s discrepancy principle. We derive the conditions for optimality in a least squares support vector machine context (LS-SVMs) where they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pelckmans, Kristiaan, Suykens, Johan A. K., De Moor, Bart
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper contrasts three related regularization schemes for kernel machines using a least squares criterion, namely Tikhonov and Ivanov regularization and Morozov’s discrepancy principle. We derive the conditions for optimality in a least squares support vector machine context (LS-SVMs) where they differ in the role of the regularization parameter. In particular, the Ivanov and Morozov scheme express the trade-off between data-fitting and smoothness in the trust region of the parameters and the noise level respectively which both can be transformed uniquely to an appropriate regularization constant for a standard LS-SVM. This insight is employed to tune automatically the regularization constant in an LS-SVM framework based on the estimated noise level, which can be obtained by using a nonparametric technique as e.g. the differogram estimator.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30499-9_189