Results on Algebraic Immunity for Cryptographically Significant Boolean Functions
Recently algebraic attack has received a lot of attention in cryptographic literature. It has been observed that a Boolean function f, interpreted as a multivariate polynomial over GF(2), should not have low degree multiples when used as a cryptographic primitive. In this paper we show that high non...
Gespeichert in:
Veröffentlicht in: | Lecture notes in computer science 2004-01, p.92-106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently algebraic attack has received a lot of attention in cryptographic literature. It has been observed that a Boolean function f, interpreted as a multivariate polynomial over GF(2), should not have low degree multiples when used as a cryptographic primitive. In this paper we show that high nonlinearity is a necessary condition to resist algebraic attack and explain how the Walsh spectra values are related to the algebraic immunity (resistance against algebraic attack) of a Boolean function. Next we present enumeration results on linearly independent annihilators. We also study certain classes of highly nonlinear resilient Boolean functions for their algebraic immunity. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30556-9_9 |