An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix
We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O...
Gespeichert in:
Veröffentlicht in: | FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science 2004-01, p.263-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | |
container_start_page | 263 |
container_title | FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science |
container_volume | |
creator | Fürer, Martin Kasiviswanathan, Shiva Prasad |
description | We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree. |
doi_str_mv | 10.1007/978-3-540-30538-5_22 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16398463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16398463</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-8c1cb51c3c878c48dffe7fcb21379f35784e3bfc8c8fbaa25ac982ca2036bb7c3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhuMXWGv_gYdcBD1Ek8xmkz2W4hdUFKngLWTTpF3tbpZkD_Xfm7bOZeB9H4bhQeiK0TtGqbyvpCJAREEJUAGKCM35EbqAnOyD8hiNWMkYASiqk0PBCypUeYpGGeGkkgWco0lK3zQPE5UQaoS-ph2ebtqQBjxvOmciXjStw9O-j2HbtGZowg5YhdgM6xb7EPGwdvjdxdZ0rhtw8NjgD9MtQ4tvKGG3-NUMsdleojNvNslN_vcYfT4-LGbPZP729DKbzknPuRqIsszWglmwSipbqKX3Tnpbcway8iCkKhzU3iqrfG0MF8ZWilvDKZR1LS2M0fXhbm-SNRsfTWebpPuYn4-_mpVQqaKEzPEDl3LVrVzUdQg_STOqd4J1FqxBZ2t671PvBMMfcmZo9Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</title><source>Springer Books</source><creator>Fürer, Martin ; Kasiviswanathan, Shiva Prasad</creator><contributor>Mahajan, Meena ; Lodaya, Kamal</contributor><creatorcontrib>Fürer, Martin ; Kasiviswanathan, Shiva Prasad ; Mahajan, Meena ; Lodaya, Kamal</creatorcontrib><description>We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540240586</identifier><identifier>ISBN: 9783540240587</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540305386</identifier><identifier>EISBN: 9783540305385</identifier><identifier>DOI: 10.1007/978-3-540-30538-5_22</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Polynomial Time Deterministic Algorithm ; Polynomial Time Turing Machine ; Random Graph Model ; Random Matrix ; Theoretical computing ; Unbiased Estimator</subject><ispartof>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, 2004-01, p.263-274</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30538-5_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30538-5_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16398463$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mahajan, Meena</contributor><contributor>Lodaya, Kamal</contributor><creatorcontrib>Fürer, Martin</creatorcontrib><creatorcontrib>Kasiviswanathan, Shiva Prasad</creatorcontrib><title>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</title><title>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science</title><description>We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Polynomial Time Deterministic Algorithm</subject><subject>Polynomial Time Turing Machine</subject><subject>Random Graph Model</subject><subject>Random Matrix</subject><subject>Theoretical computing</subject><subject>Unbiased Estimator</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540240586</isbn><isbn>9783540240587</isbn><isbn>3540305386</isbn><isbn>9783540305385</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhuMXWGv_gYdcBD1Ek8xmkz2W4hdUFKngLWTTpF3tbpZkD_Xfm7bOZeB9H4bhQeiK0TtGqbyvpCJAREEJUAGKCM35EbqAnOyD8hiNWMkYASiqk0PBCypUeYpGGeGkkgWco0lK3zQPE5UQaoS-ph2ebtqQBjxvOmciXjStw9O-j2HbtGZowg5YhdgM6xb7EPGwdvjdxdZ0rhtw8NjgD9MtQ4tvKGG3-NUMsdleojNvNslN_vcYfT4-LGbPZP729DKbzknPuRqIsszWglmwSipbqKX3Tnpbcway8iCkKhzU3iqrfG0MF8ZWilvDKZR1LS2M0fXhbm-SNRsfTWebpPuYn4-_mpVQqaKEzPEDl3LVrVzUdQg_STOqd4J1FqxBZ2t671PvBMMfcmZo9Q</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Fürer, Martin</creator><creator>Kasiviswanathan, Shiva Prasad</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20040101</creationdate><title>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</title><author>Fürer, Martin ; Kasiviswanathan, Shiva Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-8c1cb51c3c878c48dffe7fcb21379f35784e3bfc8c8fbaa25ac982ca2036bb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Polynomial Time Deterministic Algorithm</topic><topic>Polynomial Time Turing Machine</topic><topic>Random Graph Model</topic><topic>Random Matrix</topic><topic>Theoretical computing</topic><topic>Unbiased Estimator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fürer, Martin</creatorcontrib><creatorcontrib>Kasiviswanathan, Shiva Prasad</creatorcontrib><collection>Pascal-Francis</collection><jtitle>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fürer, Martin</au><au>Kasiviswanathan, Shiva Prasad</au><au>Mahajan, Meena</au><au>Lodaya, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</atitle><jtitle>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science</jtitle><date>2004-01-01</date><risdate>2004</risdate><spage>263</spage><epage>274</epage><pages>263-274</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540240586</isbn><isbn>9783540240587</isbn><eisbn>3540305386</eisbn><eisbn>9783540305385</eisbn><abstract>We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30538-5_22</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, 2004-01, p.263-274 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16398463 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Polynomial Time Deterministic Algorithm Polynomial Time Turing Machine Random Graph Model Random Matrix Theoretical computing Unbiased Estimator |
title | An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Almost%20Linear%20Time%20Approximation%20Algorithm%20for%20the%20Permanent%20of%20a%20Random%20(0-1)%20Matrix&rft.jtitle=FSTTCS%202004:%20Foundations%20of%20Software%20Technology%20and%20Theoretical%20Computer%20Science&rft.au=F%C3%BCrer,%20Martin&rft.date=2004-01-01&rft.spage=263&rft.epage=274&rft.pages=263-274&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540240586&rft.isbn_list=9783540240587&rft_id=info:doi/10.1007/978-3-540-30538-5_22&rft_dat=%3Cpascalfrancis_sprin%3E16398463%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540305386&rft.eisbn_list=9783540305385&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |