An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix

We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science 2004-01, p.263-274
Hauptverfasser: Fürer, Martin, Kasiviswanathan, Shiva Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue
container_start_page 263
container_title FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science
container_volume
creator Fürer, Martin
Kasiviswanathan, Shiva Prasad
description We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.
doi_str_mv 10.1007/978-3-540-30538-5_22
format Article
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16398463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16398463</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-8c1cb51c3c878c48dffe7fcb21379f35784e3bfc8c8fbaa25ac982ca2036bb7c3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhuMXWGv_gYdcBD1Ek8xmkz2W4hdUFKngLWTTpF3tbpZkD_Xfm7bOZeB9H4bhQeiK0TtGqbyvpCJAREEJUAGKCM35EbqAnOyD8hiNWMkYASiqk0PBCypUeYpGGeGkkgWco0lK3zQPE5UQaoS-ph2ebtqQBjxvOmciXjStw9O-j2HbtGZowg5YhdgM6xb7EPGwdvjdxdZ0rhtw8NjgD9MtQ4tvKGG3-NUMsdleojNvNslN_vcYfT4-LGbPZP729DKbzknPuRqIsszWglmwSipbqKX3Tnpbcway8iCkKhzU3iqrfG0MF8ZWilvDKZR1LS2M0fXhbm-SNRsfTWebpPuYn4-_mpVQqaKEzPEDl3LVrVzUdQg_STOqd4J1FqxBZ2t671PvBMMfcmZo9Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</title><source>Springer Books</source><creator>Fürer, Martin ; Kasiviswanathan, Shiva Prasad</creator><contributor>Mahajan, Meena ; Lodaya, Kamal</contributor><creatorcontrib>Fürer, Martin ; Kasiviswanathan, Shiva Prasad ; Mahajan, Meena ; Lodaya, Kamal</creatorcontrib><description>We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε&gt; 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε &gt; 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540240586</identifier><identifier>ISBN: 9783540240587</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540305386</identifier><identifier>EISBN: 9783540305385</identifier><identifier>DOI: 10.1007/978-3-540-30538-5_22</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Polynomial Time Deterministic Algorithm ; Polynomial Time Turing Machine ; Random Graph Model ; Random Matrix ; Theoretical computing ; Unbiased Estimator</subject><ispartof>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, 2004-01, p.263-274</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30538-5_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30538-5_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16398463$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mahajan, Meena</contributor><contributor>Lodaya, Kamal</contributor><creatorcontrib>Fürer, Martin</creatorcontrib><creatorcontrib>Kasiviswanathan, Shiva Prasad</creatorcontrib><title>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</title><title>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science</title><description>We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε&gt; 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε &gt; 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Polynomial Time Deterministic Algorithm</subject><subject>Polynomial Time Turing Machine</subject><subject>Random Graph Model</subject><subject>Random Matrix</subject><subject>Theoretical computing</subject><subject>Unbiased Estimator</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540240586</isbn><isbn>9783540240587</isbn><isbn>3540305386</isbn><isbn>9783540305385</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhuMXWGv_gYdcBD1Ek8xmkz2W4hdUFKngLWTTpF3tbpZkD_Xfm7bOZeB9H4bhQeiK0TtGqbyvpCJAREEJUAGKCM35EbqAnOyD8hiNWMkYASiqk0PBCypUeYpGGeGkkgWco0lK3zQPE5UQaoS-ph2ebtqQBjxvOmciXjStw9O-j2HbtGZowg5YhdgM6xb7EPGwdvjdxdZ0rhtw8NjgD9MtQ4tvKGG3-NUMsdleojNvNslN_vcYfT4-LGbPZP729DKbzknPuRqIsszWglmwSipbqKX3Tnpbcway8iCkKhzU3iqrfG0MF8ZWilvDKZR1LS2M0fXhbm-SNRsfTWebpPuYn4-_mpVQqaKEzPEDl3LVrVzUdQg_STOqd4J1FqxBZ2t671PvBMMfcmZo9Q</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Fürer, Martin</creator><creator>Kasiviswanathan, Shiva Prasad</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20040101</creationdate><title>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</title><author>Fürer, Martin ; Kasiviswanathan, Shiva Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-8c1cb51c3c878c48dffe7fcb21379f35784e3bfc8c8fbaa25ac982ca2036bb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Polynomial Time Deterministic Algorithm</topic><topic>Polynomial Time Turing Machine</topic><topic>Random Graph Model</topic><topic>Random Matrix</topic><topic>Theoretical computing</topic><topic>Unbiased Estimator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fürer, Martin</creatorcontrib><creatorcontrib>Kasiviswanathan, Shiva Prasad</creatorcontrib><collection>Pascal-Francis</collection><jtitle>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fürer, Martin</au><au>Kasiviswanathan, Shiva Prasad</au><au>Mahajan, Meena</au><au>Lodaya, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix</atitle><jtitle>FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science</jtitle><date>2004-01-01</date><risdate>2004</risdate><spage>263</spage><epage>274</epage><pages>263-274</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540240586</isbn><isbn>9783540240587</isbn><eisbn>3540305386</eisbn><eisbn>9783540305385</eisbn><abstract>We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε&gt; 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε &gt; 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30538-5_22</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, 2004-01, p.263-274
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16398463
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Polynomial Time Deterministic Algorithm
Polynomial Time Turing Machine
Random Graph Model
Random Matrix
Theoretical computing
Unbiased Estimator
title An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Almost%20Linear%20Time%20Approximation%20Algorithm%20for%20the%20Permanent%20of%20a%20Random%20(0-1)%20Matrix&rft.jtitle=FSTTCS%202004:%20Foundations%20of%20Software%20Technology%20and%20Theoretical%20Computer%20Science&rft.au=F%C3%BCrer,%20Martin&rft.date=2004-01-01&rft.spage=263&rft.epage=274&rft.pages=263-274&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540240586&rft.isbn_list=9783540240587&rft_id=info:doi/10.1007/978-3-540-30538-5_22&rft_dat=%3Cpascalfrancis_sprin%3E16398463%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540305386&rft.eisbn_list=9783540305385&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true