An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix
We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O...
Gespeichert in:
Veröffentlicht in: | FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science 2004-01, p.263-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output XA with (1 − ε)per(A) ≤ XA ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n3ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30538-5_22 |