On p-Norm Based Locality Measures of Space-Filling Curves
A discrete space-filling curve provides a linear indexing or traversal of a multi-dimensional grid space. We present an analytical study on the locality properties of the 2-dimensional Hilbert curve family. The underlying locality measure, based on the p-normed metric dp , is the maximum ratio of dp...
Gespeichert in:
Veröffentlicht in: | Algorithms and Computation 2004-01, p.364-376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A discrete space-filling curve provides a linear indexing or traversal of a multi-dimensional grid space. We present an analytical study on the locality properties of the 2-dimensional Hilbert curve family. The underlying locality measure, based on the p-normed metric dp , is the maximum ratio of dp(v, u)m to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{p}(\tilde{v},\tilde{u})$\end{document} over all corresponding point-pairs (v, u) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(\tilde{v},\tilde{u})$\end{document} in the m-dimensional grid space and (1-dimensional) index space, respectively. Our analytical results close the gaps between the current best lower and upper bounds with exact formulas for p ∈ {1, 2}, and extend to all reals p ≥ 2. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30551-4_33 |