Smaller Kernels for Hitting Set Problems of Constant Arity

We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nishimura, Naomi, Ragde, Prabhakar, Thilikos, Dimitrios M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 121
container_title
container_volume 3162
creator Nishimura, Naomi
Ragde, Prabhakar
Thilikos, Dimitrios M.
description We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Trotter linear-size kernel for Vertex Cover, and generalizes to demonstrating a kernel of size O(kr − − 1) for r-Hitting Set (for fixed r).
doi_str_mv 10.1007/978-3-540-28639-4_11
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16194834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088602_17_128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-96f8fac13565fd5caa83a3f51b21055a21139f8fb6ff7618dce9a0422b0ee3843</originalsourceid><addsrcrecordid>eNpFkLtOwzAUhs1VRKVvwJCF0eDjk8Q2G6qAIiqBVJgtJ7VLIE2KbYa-Pe5F4ixH-m_DR8gVsBtgTNwqISnSsmCUywoVLTTAERknGZO404pjkkEFQBELdfLvIRMgTknGkHGqRIHnJFMpIpng4oKMQ_hi6TiIZGbkbr4yXWd9_mJ9b7uQu8Hn0zbGtl_mcxvzNz_UnV2FfHD5ZOhDNH3M730bN5fkzJku2PHhj8jH48P7ZEpnr0_Pk_sZXXPBI1WVk840gGVVukXZGCPRoCuh5sDK0nAAVClSV86JCuSiscqwgvOaWYuywBG53u-uTWhM57zpmzbotW9Xxm90gqAKidsc3-dCsvql9boehu-ggektVJ0IadSJkd4B1FuoqYSHcT_8_NoQtd22GttHb7rm06yj9UEjk7JiXIPQwCX-AbI_c28</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088602_17_128</pqid></control><display><type>book_chapter</type><title>Smaller Kernels for Hitting Set Problems of Constant Arity</title><source>Springer Books</source><creator>Nishimura, Naomi ; Ragde, Prabhakar ; Thilikos, Dimitrios M.</creator><contributor>Dehne, Frank ; Downey, Rod ; Fellows, Michael ; Dehne, Frank ; Downey, Rod ; Fellows, Michael</contributor><creatorcontrib>Nishimura, Naomi ; Ragde, Prabhakar ; Thilikos, Dimitrios M. ; Dehne, Frank ; Downey, Rod ; Fellows, Michael ; Dehne, Frank ; Downey, Rod ; Fellows, Michael</creatorcontrib><description>We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Trotter linear-size kernel for Vertex Cover, and generalizes to demonstrating a kernel of size O(kr − − 1) for r-Hitting Set (for fixed r).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540230717</identifier><identifier>ISBN: 3540230718</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540286394</identifier><identifier>EISBN: 354028639X</identifier><identifier>DOI: 10.1007/978-3-540-28639-4_11</identifier><identifier>OCLC: 934980727</identifier><identifier>LCCallNum: QA76.9.A43</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; fixed parameter algorithms ; hitting set ; kernels ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2004, Vol.3162, p.121-126</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088602-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-28639-4_11$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-28639-4_11$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16194834$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dehne, Frank</contributor><contributor>Downey, Rod</contributor><contributor>Fellows, Michael</contributor><contributor>Dehne, Frank</contributor><contributor>Downey, Rod</contributor><contributor>Fellows, Michael</contributor><creatorcontrib>Nishimura, Naomi</creatorcontrib><creatorcontrib>Ragde, Prabhakar</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><title>Smaller Kernels for Hitting Set Problems of Constant Arity</title><title>Lecture notes in computer science</title><description>We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Trotter linear-size kernel for Vertex Cover, and generalizes to demonstrating a kernel of size O(kr − − 1) for r-Hitting Set (for fixed r).</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>fixed parameter algorithms</subject><subject>hitting set</subject><subject>kernels</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540230717</isbn><isbn>3540230718</isbn><isbn>9783540286394</isbn><isbn>354028639X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkLtOwzAUhs1VRKVvwJCF0eDjk8Q2G6qAIiqBVJgtJ7VLIE2KbYa-Pe5F4ixH-m_DR8gVsBtgTNwqISnSsmCUywoVLTTAERknGZO404pjkkEFQBELdfLvIRMgTknGkHGqRIHnJFMpIpng4oKMQ_hi6TiIZGbkbr4yXWd9_mJ9b7uQu8Hn0zbGtl_mcxvzNz_UnV2FfHD5ZOhDNH3M730bN5fkzJku2PHhj8jH48P7ZEpnr0_Pk_sZXXPBI1WVk840gGVVukXZGCPRoCuh5sDK0nAAVClSV86JCuSiscqwgvOaWYuywBG53u-uTWhM57zpmzbotW9Xxm90gqAKidsc3-dCsvql9boehu-ggektVJ0IadSJkd4B1FuoqYSHcT_8_NoQtd22GttHb7rm06yj9UEjk7JiXIPQwCX-AbI_c28</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Nishimura, Naomi</creator><creator>Ragde, Prabhakar</creator><creator>Thilikos, Dimitrios M.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Smaller Kernels for Hitting Set Problems of Constant Arity</title><author>Nishimura, Naomi ; Ragde, Prabhakar ; Thilikos, Dimitrios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-96f8fac13565fd5caa83a3f51b21055a21139f8fb6ff7618dce9a0422b0ee3843</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>fixed parameter algorithms</topic><topic>hitting set</topic><topic>kernels</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Naomi</creatorcontrib><creatorcontrib>Ragde, Prabhakar</creatorcontrib><creatorcontrib>Thilikos, Dimitrios M.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Naomi</au><au>Ragde, Prabhakar</au><au>Thilikos, Dimitrios M.</au><au>Dehne, Frank</au><au>Downey, Rod</au><au>Fellows, Michael</au><au>Dehne, Frank</au><au>Downey, Rod</au><au>Fellows, Michael</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Smaller Kernels for Hitting Set Problems of Constant Arity</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3162</volume><spage>121</spage><epage>126</epage><pages>121-126</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540230717</isbn><isbn>3540230718</isbn><eisbn>9783540286394</eisbn><eisbn>354028639X</eisbn><abstract>We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Trotter linear-size kernel for Vertex Cover, and generalizes to demonstrating a kernel of size O(kr − − 1) for r-Hitting Set (for fixed r).</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-28639-4_11</doi><oclcid>934980727</oclcid><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, Vol.3162, p.121-126
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16194834
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
fixed parameter algorithms
hitting set
kernels
Theoretical computing
title Smaller Kernels for Hitting Set Problems of Constant Arity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Smaller%20Kernels%20for%20Hitting%20Set%20Problems%20of%20Constant%20Arity&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Nishimura,%20Naomi&rft.date=2004&rft.volume=3162&rft.spage=121&rft.epage=126&rft.pages=121-126&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540230717&rft.isbn_list=3540230718&rft_id=info:doi/10.1007/978-3-540-28639-4_11&rft_dat=%3Cproquest_pasca%3EEBC3088602_17_128%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540286394&rft.eisbn_list=354028639X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088602_17_128&rft_id=info:pmid/&rfr_iscdi=true