Smaller Kernels for Hitting Set Problems of Constant Arity
We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Tr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate a kernel of size O(k2) for 3-Hitting Set (Hitting Set when all subsets in the collection to be hit are of size at most three), giving a partial answer to an open question of Niedermeier by improving on the O(k3) kernel of Niedermeier and Rossmanith. Our technique uses the Nemhauser-Trotter linear-size kernel for Vertex Cover, and generalizes to demonstrating a kernel of size O(kr − − 1) for r-Hitting Set (for fixed r). |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-28639-4_11 |