Multi-align: Combining Linguistic and Statistical Techniques to Improve Alignments for Adaptable MT
An adaptable statistical or hybrid MT system relies heavily on the quality of word-level alignments of real-world data. Statistical alignment approaches provide a reasonable initial estimate for word alignment. However, they cannot handle certain types of linguistic phenomena such as long-distance d...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptable statistical or hybrid MT system relies heavily on the quality of word-level alignments of real-world data. Statistical alignment approaches provide a reasonable initial estimate for word alignment. However, they cannot handle certain types of linguistic phenomena such as long-distance dependencies and structural differences between languages. We address this issue in Multi-Align, a new framework for incremental testing of different alignment algorithms and their combinations. Our design allows users to tune their systems to the properties of a particular genre/domain while still benefiting from general linguistic knowledge associated with a language pair. We demonstrate that a combination of statistical and linguistically-informed alignments can resolve translation divergences during the alignment process. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30194-3_3 |