On Test Functions for Evolutionary Multi-objective Optimization

In order to evaluate the relative performance of optimization algorithms benchmark problems are frequently used. In the case of multi-objective optimization (MOO), we will show in this paper that most known benchmark problems belong to a constrained class of functions with piecewise linear Pareto fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Okabe, Tatsuya, Jin, Yaochu, Olhofer, Markus, Sendhoff, Bernhard
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to evaluate the relative performance of optimization algorithms benchmark problems are frequently used. In the case of multi-objective optimization (MOO), we will show in this paper that most known benchmark problems belong to a constrained class of functions with piecewise linear Pareto fronts in the parameter space. We present a straightforward way to define benchmark problems with an arbitrary Pareto front both in the fitness and parameter spaces. Furthermore, we introduce a difficulty measure based on the mapping of probability density functions from parameter to fitness space. Finally, we evaluate two MOO algorithms for new benchmark problems.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30217-9_80