Adaptive Weighted Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels

In this paper, a modified Particle Swarm Optimisation (PSO) algorithm is presented to improve the performance of multi-objective optimisation. The PSO algorithm search capabilities are enhanced via the inclusion of the adaptive inertia weight and acceleration factor. In addition, a weighted aggregat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mahfouf, Mahdi, Chen, Min-You, Linkens, Derek Arthur
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a modified Particle Swarm Optimisation (PSO) algorithm is presented to improve the performance of multi-objective optimisation. The PSO algorithm search capabilities are enhanced via the inclusion of the adaptive inertia weight and acceleration factor. In addition, a weighted aggregation function has been introduced within the algorithm to guide the selection of the personal and global bests, together with a non-dominated sorting algorithm to select the particles from one iteration to another. The proposed algorithm has been successfully applied to a series of well-known benchmark functions as well as to the multi-objective optimal design of alloy steels, which aims at determining the optimal heat treatment regimes and the required weight percentages for the chemical composites in order to obtain the pre-defined mechanical properties of the material. The results have shown that the algorithm can locate the constrained optimal design with a very good accuracy
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30217-9_77