Boosting Orthogonal Least Squares Regression
A comparison between the support vector machine regression (SVR) and the orthogonal least square (OLS) forward selection regression is given by an example. The disadvantage of SVR is shown and analyzed. A new algorithm by using OLS method to select regressors (support vectors) and boosting method to...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A comparison between the support vector machine regression (SVR) and the orthogonal least square (OLS) forward selection regression is given by an example. The disadvantage of SVR is shown and analyzed. A new algorithm by using OLS method to select regressors (support vectors) and boosting method to train the regressors’ weight is proposed. This algorithm can give a small regression error when a very sparse system model is required. When a detailed model is required, the resulted train set error model and the test set error model may look very similar. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-28651-6_100 |