Boosting Orthogonal Least Squares Regression

A comparison between the support vector machine regression (SVR) and the orthogonal least square (OLS) forward selection regression is given by an example. The disadvantage of SVR is shown and analyzed. A new algorithm by using OLS method to select regressors (support vectors) and boosting method to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Xunxian, Brown, David J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comparison between the support vector machine regression (SVR) and the orthogonal least square (OLS) forward selection regression is given by an example. The disadvantage of SVR is shown and analyzed. A new algorithm by using OLS method to select regressors (support vectors) and boosting method to train the regressors’ weight is proposed. This algorithm can give a small regression error when a very sparse system model is required. When a detailed model is required, the resulted train set error model and the test set error model may look very similar.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-28651-6_100