Building Genetic Networks for Gene Expression Patterns

Building genetic regulatory networks from time series data of gene expression patterns is an important topic in bioinformatics. Probabilistic Boolean networks (PBNs) have been developed as a model of gene regulatory networks. PBNs are able to cope with uncertainty, corporate rule-based dependencies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ching, Wai-Ki, Fung, Eric S., Ng, Michael K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building genetic regulatory networks from time series data of gene expression patterns is an important topic in bioinformatics. Probabilistic Boolean networks (PBNs) have been developed as a model of gene regulatory networks. PBNs are able to cope with uncertainty, corporate rule-based dependencies between genes and uncover the relative sensitivity of genes in their interactions with other genes. However, PBNs are unlikely used in practice because of huge number of possible predictors and their computed probabilities. In this paper, we propose a multivariate Markov chain model to govern the dynamics of a genetic network for gene expression patterns. The model preserves the strength of PBNs and reduce the complexity of the networks. Parameters of the model are quadratic with respect to the number of genes. We also develop an efficient estimation method for the model parameters. Simulation results on yeast data are given to illustrate the effectiveness of the model.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-28651-6_3