Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra

In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2004-10, Vol.356 (10), p.3823-3839
Hauptverfasser: Hemmi, Yutaka, Kawamoto, Yusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3839
container_issue 10
container_start_page 3823
container_title Transactions of the American Mathematical Society
container_volume 356
creator Hemmi, Yutaka
Kawamoto, Yusuke
description In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely generated mod p cohomology for a prime p and the multiplication of it is homotopy commutative of the p-th order, then it has the mod p homotopy type of a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s, K(Z, 2)s and $K(Z/p^i, 1)s$ for i ≥ 1.
doi_str_mv 10.1090/S0002-9947-04-03647-5
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16171772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3844962</jstor_id><sourcerecordid>3844962</sourcerecordid><originalsourceid>FETCH-LOGICAL-j248t-6414749ef243d89d765c4a33211a76624faccea3a7150769b6455141e81dca593</originalsourceid><addsrcrecordid>eNo9zEtLAzEUBeAgCtbqP1CYjctoHjevZSm2IxQUqutyzWTslE4zJFHov3eg0tU9h_NxCXng7Ikzx57XjDFBnQNDGVAm9RjUBZlwZi3VVrFLMjmTa3KT826sDKyekEXdfW9DqurYxxKHYzWPff9TsHS_XTlWsa1quh7Qh1zhoanKNlTvIY0i0lnO0Xe4DU3CW3LV4j6Hu_87JZ-Ll495TVdvy9f5bEV3AmyhGjgYcKEVIBvrGqOVB5RScI5GawEteh9QouGKGe2-NCjFgQfLG4_KySl5PP0dMHvctwkPvsubIXU9puOGa264MWJ09ye3yyWm8y4tgNNC_gFXAFee</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Hemmi, Yutaka ; Kawamoto, Yusuke</creator><creatorcontrib>Hemmi, Yutaka ; Kawamoto, Yusuke</creatorcontrib><description>In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely generated mod p cohomology for a prime p and the multiplication of it is homotopy commutative of the p-th order, then it has the mod p homotopy type of a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s, K(Z, 2)s and $K(Z/p^i, 1)s$ for i ≥ 1.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-04-03647-5</identifier><identifier>CODEN: TAMTAM</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Algebraic topology ; Commutativity ; Convex and discrete geometry ; Exact sciences and technology ; Geometry ; Hexagons ; Lie groups ; Mathematical theorems ; Mathematics ; Polyhedrons ; Sciences and techniques of general use ; Topological theorems ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vertices</subject><ispartof>Transactions of the American Mathematical Society, 2004-10, Vol.356 (10), p.3823-3839</ispartof><rights>Copyright 2004 American Mathematical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3844962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3844962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16171772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemmi, Yutaka</creatorcontrib><creatorcontrib>Kawamoto, Yusuke</creatorcontrib><title>Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra</title><title>Transactions of the American Mathematical Society</title><description>In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely generated mod p cohomology for a prime p and the multiplication of it is homotopy commutative of the p-th order, then it has the mod p homotopy type of a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s, K(Z, 2)s and $K(Z/p^i, 1)s$ for i ≥ 1.</description><subject>Algebra</subject><subject>Algebraic topology</subject><subject>Commutativity</subject><subject>Convex and discrete geometry</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Hexagons</subject><subject>Lie groups</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Polyhedrons</subject><subject>Sciences and techniques of general use</subject><subject>Topological theorems</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vertices</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9zEtLAzEUBeAgCtbqP1CYjctoHjevZSm2IxQUqutyzWTslE4zJFHov3eg0tU9h_NxCXng7Ikzx57XjDFBnQNDGVAm9RjUBZlwZi3VVrFLMjmTa3KT826sDKyekEXdfW9DqurYxxKHYzWPff9TsHS_XTlWsa1quh7Qh1zhoanKNlTvIY0i0lnO0Xe4DU3CW3LV4j6Hu_87JZ-Ll495TVdvy9f5bEV3AmyhGjgYcKEVIBvrGqOVB5RScI5GawEteh9QouGKGe2-NCjFgQfLG4_KySl5PP0dMHvctwkPvsubIXU9puOGa264MWJ09ye3yyWm8y4tgNNC_gFXAFee</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Hemmi, Yutaka</creator><creator>Kawamoto, Yusuke</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>200410</creationdate><title>Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra</title><author>Hemmi, Yutaka ; Kawamoto, Yusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j248t-6414749ef243d89d765c4a33211a76624faccea3a7150769b6455141e81dca593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Algebraic topology</topic><topic>Commutativity</topic><topic>Convex and discrete geometry</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Hexagons</topic><topic>Lie groups</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Polyhedrons</topic><topic>Sciences and techniques of general use</topic><topic>Topological theorems</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemmi, Yutaka</creatorcontrib><creatorcontrib>Kawamoto, Yusuke</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemmi, Yutaka</au><au>Kawamoto, Yusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2004-10</date><risdate>2004</risdate><volume>356</volume><issue>10</issue><spage>3823</spage><epage>3839</epage><pages>3823-3839</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><coden>TAMTAM</coden><abstract>In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely generated mod p cohomology for a prime p and the multiplication of it is homotopy commutative of the p-th order, then it has the mod p homotopy type of a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s, K(Z, 2)s and $K(Z/p^i, 1)s$ for i ≥ 1.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-04-03647-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2004-10, Vol.356 (10), p.3823-3839
issn 0002-9947
1088-6850
language eng
recordid cdi_pascalfrancis_primary_16171772
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics
subjects Algebra
Algebraic topology
Commutativity
Convex and discrete geometry
Exact sciences and technology
Geometry
Hexagons
Lie groups
Mathematical theorems
Mathematics
Polyhedrons
Sciences and techniques of general use
Topological theorems
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Vertices
title Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Homotopy%20Commutativity%20of%20H-Spaces%20and%20the%20Permuto-Associahedra&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Hemmi,%20Yutaka&rft.date=2004-10&rft.volume=356&rft.issue=10&rft.spage=3823&rft.epage=3839&rft.pages=3823-3839&rft.issn=0002-9947&rft.eissn=1088-6850&rft.coden=TAMTAM&rft_id=info:doi/10.1090/S0002-9947-04-03647-5&rft_dat=%3Cjstor_pasca%3E3844962%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3844962&rfr_iscdi=true