Higher Homotopy Commutativity of H-Spaces and the Permuto-Associahedra

In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2004-10, Vol.356 (10), p.3823-3839
Hauptverfasser: Hemmi, Yutaka, Kawamoto, Yusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n-space$. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p-space$ has the finitely generated mod p cohomology for a prime p and the multiplication of it is homotopy commutative of the p-th order, then it has the mod p homotopy type of a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s, K(Z, 2)s and $K(Z/p^i, 1)s$ for i ≥ 1.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-04-03647-5