Two Types of RG-Factorizations of Quasi-birth-and-death Processes and Their Applications to Stochastic Integral Functionals

In this paper, we provide UL-type and LU-type RG-factorizations for an irreducible continuous-time level-dependent quasi-birth-and-death (QBD) process with either finitely-many levels or infinitely-many levels, and then apply the RG-factorizations to solve a class of linear QBD-equations, which is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic models 2004-12, Vol.20 (3), p.299-340
Hauptverfasser: Li, Quan-Lin, Cao, Jinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we provide UL-type and LU-type RG-factorizations for an irreducible continuous-time level-dependent quasi-birth-and-death (QBD) process with either finitely-many levels or infinitely-many levels, and then apply the RG-factorizations to solve a class of linear QBD-equations, which is always crucial for analyzing a stochastic model described as a QBD process. Based on the results obtained for the linear QBD-equations, we analyze up-, down- and return-integral functionals. We explicitly express the Laplace transforms of the conditional distributions of the three types of stochastic integral functionals and their conditional moments.
ISSN:1532-6349
1532-4214
DOI:10.1081/STM-200025740