Increasing ILP of RISC Microprocessors Through Control-Flow Based Reconfiguration
This work introduces a new concept of enhancing a RISC microprocessor with a tightly coupled reconfigurable ALU array, a vector load/store unit and a control flow manipulation unit. These units implement coarse-grain reconfigurable structures by means of switchable contexts. Context activation is pe...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work introduces a new concept of enhancing a RISC microprocessor with a tightly coupled reconfigurable ALU array, a vector load/store unit and a control flow manipulation unit. These units implement coarse-grain reconfigurable structures by means of switchable contexts. Context activation is performed event-driven according to the instruction pointer of the RISC microprocessor. The synchronous operation of the context controlled functional units enables instruction level parallelism (ILP) comparable to complex VLIW processors, without introducing instruction overhead. The reconfigurable units can be adapted to the application demands exploiting parallelism more coarse-grain than common instruction-level functional units. To evaluate the concept, a standard ARM RISC microprocessor was chosen to be tightly coupled to these reconfigurable units. Architecture description and simulation were performed using RECAST, a reconfiguration-enabled architecture description language and simulation tool-set. The software environment also includes a retargetable, parallelizing C compiler based on the SUIF compiler kit. First experiments executing DSP algorithms have indicated, that the proposed architecture can exploit more of the potential application parallelism than conventional VLIW processors. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30117-2_79 |