Discharge mechanism for electrostatic fly control
Electrostatic force has been proposed for use in fly height reduction and control. The dominant failure mode is electrical discharge at the head-disk interface (HDI) due to field emission. Ballast resistor films have been used for limiting field emission. We applied this idea to the HDI by depositin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2004-07, Vol.40 (4), p.3162-3164 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrostatic force has been proposed for use in fly height reduction and control. The dominant failure mode is electrical discharge at the head-disk interface (HDI) due to field emission. Ballast resistor films have been used for limiting field emission. We applied this idea to the HDI by depositing a thick coating of diamond-like carbon (DLC) on the slider. A typical slider has 25 /spl Aring/ of DLC and exhibits breakdown voltage of less than 3 V on product media. When the coating thickness was increased to 430 /spl Aring/, it was sufficient to prevent discharge up to 6 V and allowed approximately 33% clearance reduction without crashing or discharging. The result is in good agreement with fly height modeling, which takes into account the head-disk electrostatic force. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2004.828981 |