Maximizing the Number of Packed Rectangles
Given a set of rectangles we are asked to pack as many of them as possible into a bigger rectangle. The rectangles packed may not overlap and may not be rotated. This problem is NP-hard in the strong sense even for packing squares into a square. We establish the relationship between the asymptotic w...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set of rectangles we are asked to pack as many of them as possible into a bigger rectangle. The rectangles packed may not overlap and may not be rotated. This problem is NP-hard in the strong sense even for packing squares into a square. We establish the relationship between the asymptotic worst-case ratio and the (absolute) worst-case ratio for the problem. It is proved that there exists an asymptotic FPTAS, and thus a PTAS, for packing squares into a rectangle. We give an approximation algorithm with asymptotic ratio of at most two for packing rectangles, and further show a simple (2+ε)-approximation algorithm. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-27810-8_31 |