Rough Set Methods in Approximation of Hierarchical Concepts

Many learning methods ignore domain knowledge in synthesis of concept approximation. We propose to use hierarchical schemes for learning approximations of complex concepts from experimental data using inference diagrams based on domain knowledge. Our solution is based on the rough set and rough mere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bazan, Jan G., Nguyen, Sinh Hoa, Nguyen, Hung Son, Skowron, Andrzej
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many learning methods ignore domain knowledge in synthesis of concept approximation. We propose to use hierarchical schemes for learning approximations of complex concepts from experimental data using inference diagrams based on domain knowledge. Our solution is based on the rough set and rough mereological approaches. The effectiveness of the proposed approach is performed and evaluated on artificial data sets generated by a traffic road simulator.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-25929-9_41