Practical Large-Scale Distributed Key Generation

Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Canny, John, Sorkin, Stephen
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 138
container_title
container_volume 3027
creator Canny, John
Sorkin, Stephen
description Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at least quadratic cost per player to handle a constant fraction of adversaries, which is not practical for extremely large sets of participants. We present a new distributed key generation algorithm, sparse matrix DKG, for discrete-log based cryptosystems that requires only polylogarithmic communication and computation per player and no global broadcast. This algorithm has nearly the same optimal threshold as previous ones, allowing up to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}-\epsilon$\end{document} fraction of adversaries, but is probabilistic and has an arbitrarily small failure probability. In addition, this algorithm admits a rigorous proof of security. We also introduce the notion of matrix evaluated DKG, which encompasses both the new sparse matrix algorithm and the familiar polynomial based ones.
doi_str_mv 10.1007/978-3-540-24676-3_9
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15811291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088562_15_150</sourcerecordid><originalsourceid>FETCH-LOGICAL-p316t-c4857df8d88ab9ba78092f31ac78c02e2a07881b13dec20737d323e6a7e9c5ab3</originalsourceid><addsrcrecordid>eNotUE1PwzAMDZ-ijP0CLr1wDCRx2yRHNGAgJoEEnKM0dUdhtCPJDvv3pBuWJX-9Z1uPkEvOrjlj8kZLRYGWBaOiqGRFwegDcg6psavFIcl4xTkFKPQRmSb4bsZ1CsckY8AE1bKAU5LpBFFMi_KMTEP4YqNpBUpkhL1662Ln7CpfWL9E-pZSzO-6EH1XbyI2-TNu8zn26G3shv6CnLR2FXD6Hyfk4-H-ffZIFy_zp9ntgq6BV5G6QpWyaVWjlK11beV4vwVunVSOCRSWSaV4zaFBJ5gE2YAArKxE7Upbw4Rc7feubUgvtd72rgtm7bsf67eGl4pzoXnC8T0upFG_RG_qYfgOhjMzymiSLgZMUsbsZEu5Thz43-2H3w2GaHAkOeyjtyv3adcRfTDAlCorkW4lZ_AHzfBuyw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088562_15_150</pqid></control><display><type>book_chapter</type><title>Practical Large-Scale Distributed Key Generation</title><source>Springer Books</source><creator>Canny, John ; Sorkin, Stephen</creator><contributor>Cachin, Christian ; Camenisch, Jan ; Cachin, Christian ; Camenisch, Jan L.</contributor><creatorcontrib>Canny, John ; Sorkin, Stephen ; Cachin, Christian ; Camenisch, Jan ; Cachin, Christian ; Camenisch, Jan L.</creatorcontrib><description>Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at least quadratic cost per player to handle a constant fraction of adversaries, which is not practical for extremely large sets of participants. We present a new distributed key generation algorithm, sparse matrix DKG, for discrete-log based cryptosystems that requires only polylogarithmic communication and computation per player and no global broadcast. This algorithm has nearly the same optimal threshold as previous ones, allowing up to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}-\epsilon$\end{document} fraction of adversaries, but is probabilistic and has an arbitrarily small failure probability. In addition, this algorithm admits a rigorous proof of security. We also introduce the notion of matrix evaluated DKG, which encompasses both the new sparse matrix algorithm and the familiar polynomial based ones.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540219354</identifier><identifier>ISBN: 3540219358</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540246762</identifier><identifier>EISBN: 9783540246763</identifier><identifier>DOI: 10.1007/978-3-540-24676-3_9</identifier><identifier>OCLC: 934980925</identifier><identifier>LCCallNum: QA268</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Cryptography ; Discrete Logarithm ; Distributed Key Generation ; Exact sciences and technology ; Information, signal and communications theory ; Linear Algebra ; Random Walk ; Signal and communications theory ; Software ; Telecommunications and information theory ; Threshold Cryptography</subject><ispartof>Advances in Cryptology - EUROCRYPT 2004, 2004, Vol.3027, p.138-152</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088562-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24676-3_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24676-3_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15811291$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Cachin, Christian</contributor><contributor>Camenisch, Jan</contributor><contributor>Cachin, Christian</contributor><contributor>Camenisch, Jan L.</contributor><creatorcontrib>Canny, John</creatorcontrib><creatorcontrib>Sorkin, Stephen</creatorcontrib><title>Practical Large-Scale Distributed Key Generation</title><title>Advances in Cryptology - EUROCRYPT 2004</title><description>Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at least quadratic cost per player to handle a constant fraction of adversaries, which is not practical for extremely large sets of participants. We present a new distributed key generation algorithm, sparse matrix DKG, for discrete-log based cryptosystems that requires only polylogarithmic communication and computation per player and no global broadcast. This algorithm has nearly the same optimal threshold as previous ones, allowing up to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}-\epsilon$\end{document} fraction of adversaries, but is probabilistic and has an arbitrarily small failure probability. In addition, this algorithm admits a rigorous proof of security. We also introduce the notion of matrix evaluated DKG, which encompasses both the new sparse matrix algorithm and the familiar polynomial based ones.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Cryptography</subject><subject>Discrete Logarithm</subject><subject>Distributed Key Generation</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Linear Algebra</subject><subject>Random Walk</subject><subject>Signal and communications theory</subject><subject>Software</subject><subject>Telecommunications and information theory</subject><subject>Threshold Cryptography</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540219354</isbn><isbn>3540219358</isbn><isbn>3540246762</isbn><isbn>9783540246763</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUE1PwzAMDZ-ijP0CLr1wDCRx2yRHNGAgJoEEnKM0dUdhtCPJDvv3pBuWJX-9Z1uPkEvOrjlj8kZLRYGWBaOiqGRFwegDcg6psavFIcl4xTkFKPQRmSb4bsZ1CsckY8AE1bKAU5LpBFFMi_KMTEP4YqNpBUpkhL1662Ln7CpfWL9E-pZSzO-6EH1XbyI2-TNu8zn26G3shv6CnLR2FXD6Hyfk4-H-ffZIFy_zp9ntgq6BV5G6QpWyaVWjlK11beV4vwVunVSOCRSWSaV4zaFBJ5gE2YAArKxE7Upbw4Rc7feubUgvtd72rgtm7bsf67eGl4pzoXnC8T0upFG_RG_qYfgOhjMzymiSLgZMUsbsZEu5Thz43-2H3w2GaHAkOeyjtyv3adcRfTDAlCorkW4lZ_AHzfBuyw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Canny, John</creator><creator>Sorkin, Stephen</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Practical Large-Scale Distributed Key Generation</title><author>Canny, John ; Sorkin, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p316t-c4857df8d88ab9ba78092f31ac78c02e2a07881b13dec20737d323e6a7e9c5ab3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Cryptography</topic><topic>Discrete Logarithm</topic><topic>Distributed Key Generation</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Linear Algebra</topic><topic>Random Walk</topic><topic>Signal and communications theory</topic><topic>Software</topic><topic>Telecommunications and information theory</topic><topic>Threshold Cryptography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canny, John</creatorcontrib><creatorcontrib>Sorkin, Stephen</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canny, John</au><au>Sorkin, Stephen</au><au>Cachin, Christian</au><au>Camenisch, Jan</au><au>Cachin, Christian</au><au>Camenisch, Jan L.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Practical Large-Scale Distributed Key Generation</atitle><btitle>Advances in Cryptology - EUROCRYPT 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3027</volume><spage>138</spage><epage>152</epage><pages>138-152</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540219354</isbn><isbn>3540219358</isbn><eisbn>3540246762</eisbn><eisbn>9783540246763</eisbn><abstract>Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at least quadratic cost per player to handle a constant fraction of adversaries, which is not practical for extremely large sets of participants. We present a new distributed key generation algorithm, sparse matrix DKG, for discrete-log based cryptosystems that requires only polylogarithmic communication and computation per player and no global broadcast. This algorithm has nearly the same optimal threshold as previous ones, allowing up to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}-\epsilon$\end{document} fraction of adversaries, but is probabilistic and has an arbitrarily small failure probability. In addition, this algorithm admits a rigorous proof of security. We also introduce the notion of matrix evaluated DKG, which encompasses both the new sparse matrix algorithm and the familiar polynomial based ones.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24676-3_9</doi><oclcid>934980925</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Cryptology - EUROCRYPT 2004, 2004, Vol.3027, p.138-152
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15811291
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Cryptography
Discrete Logarithm
Distributed Key Generation
Exact sciences and technology
Information, signal and communications theory
Linear Algebra
Random Walk
Signal and communications theory
Software
Telecommunications and information theory
Threshold Cryptography
title Practical Large-Scale Distributed Key Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Practical%20Large-Scale%20Distributed%20Key%20Generation&rft.btitle=Advances%20in%20Cryptology%20-%20EUROCRYPT%202004&rft.au=Canny,%20John&rft.date=2004&rft.volume=3027&rft.spage=138&rft.epage=152&rft.pages=138-152&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540219354&rft.isbn_list=3540219358&rft_id=info:doi/10.1007/978-3-540-24676-3_9&rft_dat=%3Cproquest_pasca%3EEBC3088562_15_150%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540246762&rft.eisbn_list=9783540246763&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088562_15_150&rft_id=info:pmid/&rfr_iscdi=true