Practical Large-Scale Distributed Key Generation
Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at l...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of many large-scale distributed computing tasks such as fully peer-to-peer computation and voting schemes. Previous solutions relied on a dedicated broadcast channel and had at least quadratic cost per player to handle a constant fraction of adversaries, which is not practical for extremely large sets of participants. We present a new distributed key generation algorithm, sparse matrix DKG, for discrete-log based cryptosystems that requires only polylogarithmic communication and computation per player and no global broadcast. This algorithm has nearly the same optimal threshold as previous ones, allowing up to a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{1}{2}-\epsilon$\end{document} fraction of adversaries, but is probabilistic and has an arbitrarily small failure probability. In addition, this algorithm admits a rigorous proof of security. We also introduce the notion of matrix evaluated DKG, which encompasses both the new sparse matrix algorithm and the familiar polynomial based ones. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-24676-3_9 |