A-Teams: An Agent Architecture for Optimization and Decision-Support

The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rachlin, John, Goodwin, Richard, Murthy, Sesh, Akkiraju, Rama, Wu, Fred, Kumaran, Santhosh, Das, Raja
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue
container_start_page 261
container_title
container_volume 1555
creator Rachlin, John
Goodwin, Richard
Murthy, Sesh
Akkiraju, Rama
Wu, Fred
Kumaran, Santhosh
Das, Raja
description The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of agents shares a population of solutions and evolves an optimized set of solutions. Each agent embodies its own algorithm for creating, improving or eliminating a solution. Through sharing of the population of solutions, cooperative behavior between agents emerges and tends to result in better solutions than any one agent could produce. Since agents in an A-Team are autonomous and asynchronous, the architecture is both scalable and robust. In order to make the architecture easier to use and more widely available, we have developed an A-Team class library that provides a foundation for creating A-Team based decision-support systems.
doi_str_mv 10.1007/3-540-49057-4_17
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1576905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6491667_207_273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3007-f2d23d97c2a321e5aaff94dbd027df5fc1afb094b177a1f25edb34b96b6eb37c3</originalsourceid><addsrcrecordid>eNo9kMtPwzAMxsNTjLE7xx64ZiRx2hBu1cZLmrQD4xylabIVtrYk2QH-erKH8MXyZ_uT_UPolpIxJUTcA845wVySXGCuqDhBIykeIIl7TZ6iAS0oxQBcnv33ilxQYOdoQIAwLAWHS3RNGUgpmQByhUYhfJIULCkUBmha4oXVm_CYlW1WLm0bs9KbVROtiVtvM9f5bN7HZtP86th0babbOpta04RU4Pdt33c-3qALp9fBjo55iD6enxaTVzybv7xNyhk2kF7CjtUMaikM08CozbV2TvK6qgkTtcudodpVRPKKCqGpY7mtK-CVLKrCViAMDNHdwbfXwei187pNh6jeNxvtfxTNRZHYpLHxYSykTru0XlVd9xUUJWqHVoFKpNQeo9qhTQv86Ou7760NUdndhkk0vF6ble6j9UEVXNKiEIolj0QT_gBmUXYi</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>EBC6491667_207_273</pqid></control><display><type>conference_proceeding</type><title>A-Teams: An Agent Architecture for Optimization and Decision-Support</title><source>Springer Books</source><creator>Rachlin, John ; Goodwin, Richard ; Murthy, Sesh ; Akkiraju, Rama ; Wu, Fred ; Kumaran, Santhosh ; Das, Raja</creator><contributor>Rao, Anand S ; Müller, Jörg ; Singh, Munindar P ; Singh, Munindar P. ; Müller, Jörg P. ; Rao, Anand S.</contributor><creatorcontrib>Rachlin, John ; Goodwin, Richard ; Murthy, Sesh ; Akkiraju, Rama ; Wu, Fred ; Kumaran, Santhosh ; Das, Raja ; Rao, Anand S ; Müller, Jörg ; Singh, Munindar P ; Singh, Munindar P. ; Müller, Jörg P. ; Rao, Anand S.</creatorcontrib><description>The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of agents shares a population of solutions and evolves an optimized set of solutions. Each agent embodies its own algorithm for creating, improving or eliminating a solution. Through sharing of the population of solutions, cooperative behavior between agents emerges and tends to result in better solutions than any one agent could produce. Since agents in an A-Team are autonomous and asynchronous, the architecture is both scalable and robust. In order to make the architecture easier to use and more widely available, we have developed an A-Team class library that provides a foundation for creating A-Team based decision-support systems.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540657132</identifier><identifier>ISBN: 3540657134</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540490579</identifier><identifier>EISBN: 3540490574</identifier><identifier>DOI: 10.1007/3-540-49057-4_17</identifier><identifier>OCLC: 1239992730</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Agent Architecture ; Applied sciences ; Artificial intelligence ; Class Library ; Computer science; control theory; systems ; Constraint Satisfaction Problem ; Exact sciences and technology ; Learning and adaptive systems ; Software Agent ; Traveling Salesman Problem</subject><ispartof>Intelligent Agents V: Agents Theories, Architectures, and Languages, 1999, Vol.1555, p.261-276</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3007-f2d23d97c2a321e5aaff94dbd027df5fc1afb094b177a1f25edb34b96b6eb37c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6491667-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-49057-4_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-49057-4_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1576905$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rao, Anand S</contributor><contributor>Müller, Jörg</contributor><contributor>Singh, Munindar P</contributor><contributor>Singh, Munindar P.</contributor><contributor>Müller, Jörg P.</contributor><contributor>Rao, Anand S.</contributor><creatorcontrib>Rachlin, John</creatorcontrib><creatorcontrib>Goodwin, Richard</creatorcontrib><creatorcontrib>Murthy, Sesh</creatorcontrib><creatorcontrib>Akkiraju, Rama</creatorcontrib><creatorcontrib>Wu, Fred</creatorcontrib><creatorcontrib>Kumaran, Santhosh</creatorcontrib><creatorcontrib>Das, Raja</creatorcontrib><title>A-Teams: An Agent Architecture for Optimization and Decision-Support</title><title>Intelligent Agents V: Agents Theories, Architectures, and Languages</title><description>The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of agents shares a population of solutions and evolves an optimized set of solutions. Each agent embodies its own algorithm for creating, improving or eliminating a solution. Through sharing of the population of solutions, cooperative behavior between agents emerges and tends to result in better solutions than any one agent could produce. Since agents in an A-Team are autonomous and asynchronous, the architecture is both scalable and robust. In order to make the architecture easier to use and more widely available, we have developed an A-Team class library that provides a foundation for creating A-Team based decision-support systems.</description><subject>Agent Architecture</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Class Library</subject><subject>Computer science; control theory; systems</subject><subject>Constraint Satisfaction Problem</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Software Agent</subject><subject>Traveling Salesman Problem</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540657132</isbn><isbn>3540657134</isbn><isbn>9783540490579</isbn><isbn>3540490574</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kMtPwzAMxsNTjLE7xx64ZiRx2hBu1cZLmrQD4xylabIVtrYk2QH-erKH8MXyZ_uT_UPolpIxJUTcA845wVySXGCuqDhBIykeIIl7TZ6iAS0oxQBcnv33ilxQYOdoQIAwLAWHS3RNGUgpmQByhUYhfJIULCkUBmha4oXVm_CYlW1WLm0bs9KbVROtiVtvM9f5bN7HZtP86th0babbOpta04RU4Pdt33c-3qALp9fBjo55iD6enxaTVzybv7xNyhk2kF7CjtUMaikM08CozbV2TvK6qgkTtcudodpVRPKKCqGpY7mtK-CVLKrCViAMDNHdwbfXwei187pNh6jeNxvtfxTNRZHYpLHxYSykTru0XlVd9xUUJWqHVoFKpNQeo9qhTQv86Ou7760NUdndhkk0vF6ble6j9UEVXNKiEIolj0QT_gBmUXYi</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Rachlin, John</creator><creator>Goodwin, Richard</creator><creator>Murthy, Sesh</creator><creator>Akkiraju, Rama</creator><creator>Wu, Fred</creator><creator>Kumaran, Santhosh</creator><creator>Das, Raja</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>A-Teams: An Agent Architecture for Optimization and Decision-Support</title><author>Rachlin, John ; Goodwin, Richard ; Murthy, Sesh ; Akkiraju, Rama ; Wu, Fred ; Kumaran, Santhosh ; Das, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3007-f2d23d97c2a321e5aaff94dbd027df5fc1afb094b177a1f25edb34b96b6eb37c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Agent Architecture</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Class Library</topic><topic>Computer science; control theory; systems</topic><topic>Constraint Satisfaction Problem</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Software Agent</topic><topic>Traveling Salesman Problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachlin, John</creatorcontrib><creatorcontrib>Goodwin, Richard</creatorcontrib><creatorcontrib>Murthy, Sesh</creatorcontrib><creatorcontrib>Akkiraju, Rama</creatorcontrib><creatorcontrib>Wu, Fred</creatorcontrib><creatorcontrib>Kumaran, Santhosh</creatorcontrib><creatorcontrib>Das, Raja</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachlin, John</au><au>Goodwin, Richard</au><au>Murthy, Sesh</au><au>Akkiraju, Rama</au><au>Wu, Fred</au><au>Kumaran, Santhosh</au><au>Das, Raja</au><au>Rao, Anand S</au><au>Müller, Jörg</au><au>Singh, Munindar P</au><au>Singh, Munindar P.</au><au>Müller, Jörg P.</au><au>Rao, Anand S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A-Teams: An Agent Architecture for Optimization and Decision-Support</atitle><btitle>Intelligent Agents V: Agents Theories, Architectures, and Languages</btitle><date>1999</date><risdate>1999</risdate><volume>1555</volume><spage>261</spage><epage>276</epage><pages>261-276</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540657132</isbn><isbn>3540657134</isbn><eisbn>9783540490579</eisbn><eisbn>3540490574</eisbn><abstract>The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of agents shares a population of solutions and evolves an optimized set of solutions. Each agent embodies its own algorithm for creating, improving or eliminating a solution. Through sharing of the population of solutions, cooperative behavior between agents emerges and tends to result in better solutions than any one agent could produce. Since agents in an A-Team are autonomous and asynchronous, the architecture is both scalable and robust. In order to make the architecture easier to use and more widely available, we have developed an A-Team class library that provides a foundation for creating A-Team based decision-support systems.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-49057-4_17</doi><oclcid>1239992730</oclcid><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Intelligent Agents V: Agents Theories, Architectures, and Languages, 1999, Vol.1555, p.261-276
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1576905
source Springer Books
subjects Agent Architecture
Applied sciences
Artificial intelligence
Class Library
Computer science
control theory
systems
Constraint Satisfaction Problem
Exact sciences and technology
Learning and adaptive systems
Software Agent
Traveling Salesman Problem
title A-Teams: An Agent Architecture for Optimization and Decision-Support
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A-Teams:%20An%20Agent%20Architecture%20for%20Optimization%20and%20Decision-Support&rft.btitle=Intelligent%20Agents%20V:%20Agents%20Theories,%20Architectures,%20and%20Languages&rft.au=Rachlin,%20John&rft.date=1999&rft.volume=1555&rft.spage=261&rft.epage=276&rft.pages=261-276&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540657132&rft.isbn_list=3540657134&rft_id=info:doi/10.1007/3-540-49057-4_17&rft_dat=%3Cproquest_pasca%3EEBC6491667_207_273%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540490579&rft.eisbn_list=3540490574&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6491667_207_273&rft_id=info:pmid/&rfr_iscdi=true