A-Teams: An Agent Architecture for Optimization and Decision-Support

The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rachlin, John, Goodwin, Richard, Murthy, Sesh, Akkiraju, Rama, Wu, Fred, Kumaran, Santhosh, Das, Raja
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of agents shares a population of solutions and evolves an optimized set of solutions. Each agent embodies its own algorithm for creating, improving or eliminating a solution. Through sharing of the population of solutions, cooperative behavior between agents emerges and tends to result in better solutions than any one agent could produce. Since agents in an A-Team are autonomous and asynchronous, the architecture is both scalable and robust. In order to make the architecture easier to use and more widely available, we have developed an A-Team class library that provides a foundation for creating A-Team based decision-support systems.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-49057-4_17