A-Teams: An Agent Architecture for Optimization and Decision-Support
The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effectiveness of an agent architecture is measured by its successful application to real problems. In this paper, we describe an agent architecture, A-Teams, that we have successfully used to develop real-world optimization and decision support applications. In an A-Team, an asynchronous team of agents shares a population of solutions and evolves an optimized set of solutions. Each agent embodies its own algorithm for creating, improving or eliminating a solution. Through sharing of the population of solutions, cooperative behavior between agents emerges and tends to result in better solutions than any one agent could produce. Since agents in an A-Team are autonomous and asynchronous, the architecture is both scalable and robust. In order to make the architecture easier to use and more widely available, we have developed an A-Team class library that provides a foundation for creating A-Team based decision-support systems. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-49057-4_17 |