An Ontology-Driven Framework for Data Transformation in Scientific Workflows

Ecologists spend considerable effort integrating heterogeneous data for statistical analyses and simulations, for example, to run and test predictive models. Our research is focused on reducing this effort by providing data integration and transformation tools, allowing researchers to focus on “real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bowers, Shawn, Ludäscher, Bertram
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ecologists spend considerable effort integrating heterogeneous data for statistical analyses and simulations, for example, to run and test predictive models. Our research is focused on reducing this effort by providing data integration and transformation tools, allowing researchers to focus on “real science,” that is, discovering new knowledge through analysis and modeling. This paper defines a generic framework for transforming heterogeneous data within scientific workflows. Our approach relies on a formalized ontology, which serves as a simple, unstructured global schema. In the framework, inputs and outputs of services within scientific workflows can have structural types and separate semantic types (expressions of the target ontology). In addition, a registration mapping can be defined to relate input and output structural types to their corresponding semantic types. Using registration mappings, appropriate data transformations can then be generated for each desired service composition. Here, we describe our proposed framework and an initial implementation for services that consume and produce XML data.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-24745-6_1