A Simulated Study of Implicit Feedback Models

In this paper we report on a study of implicit feedback models for unobtrusively tracking the information needs of searchers. Such models use relevance information gathered from searcher interaction and can be a potential substitute for explicit relevance feedback. We introduce a variety of implicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: White, Ryen W., Jose, Joemon M., van Rijsbergen, C. J., Ruthven, Ian
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we report on a study of implicit feedback models for unobtrusively tracking the information needs of searchers. Such models use relevance information gathered from searcher interaction and can be a potential substitute for explicit relevance feedback. We introduce a variety of implicit feedback models designed to enhance an Information Retrieval (IR) system’s representation of searchers’ information needs. To benchmark their performance we use a simulation-centric evaluation methodology that measures how well each model learns relevance and improves search effectiveness. The results show that a heuristic-based binary voting model and one based on Jeffrey’s rule of conditioning [5] outperform the other models under investigation.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-24752-4_23