Minimum Latency Tours and the k-Traveling Repairmen Problem
Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | |
container_start_page | 423 |
container_title | |
container_volume | 2976 |
creator | Jothi, Raja Raghavachari, Balaji |
description | Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants. |
doi_str_mv | 10.1007/978-3-540-24698-5_46 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15758203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087252_53_438</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-288b1ea88b9f0c2ab2461ec60f28d27750c66b01c517e2cbfc9174ce7a69a1bd3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1TRKV_wCIblgY_Y1usEOIlFYFQWVuO67ShiRPsFKl_j9NWYhYz0r13RqMDwBVGNxghcauEhBRyhiBhhZKQa1YcgWmSaRJ3Gj8GGS4whpQydfLvYcIlOwUZoohAJRg9B5lKkdGmF2Aa4zdKhaXigmXg7q32dbtp85kZnLfbfN5tQsyNX-TDyuVrOA_m1zW1X-afrjd1aJ3PP0JXNq69BGeVaaKbHuYEfD09zh9e4Oz9-fXhfgZ7IsgAiZQldiZ1VSFLTJn-x84WqCJyQYTgyBZFibDlWDhiy8oqLJh1whTK4HJBJ-B6f7c30ZqmCsbbOuo-1K0JW4254JIgmnJkn4vJ8ksXdNl166gx0iNVnRhoqhMkvSOoR6ppiR6Oh-5n4-Kg3bhlnR-CaezK9IMLUVMkBeFEc6oZlfQPhKV0Mg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087252_53_438</pqid></control><display><type>book_chapter</type><title>Minimum Latency Tours and the k-Traveling Repairmen Problem</title><source>Springer Books</source><creator>Jothi, Raja ; Raghavachari, Balaji</creator><contributor>Farach-Colton, Martin ; Farach-Colton, Martín</contributor><creatorcontrib>Jothi, Raja ; Raghavachari, Balaji ; Farach-Colton, Martin ; Farach-Colton, Martín</creatorcontrib><description>Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540212584</identifier><identifier>ISBN: 3540212582</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540246985</identifier><identifier>EISBN: 3540246983</identifier><identifier>DOI: 10.1007/978-3-540-24698-5_46</identifier><identifier>OCLC: 934978353</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Approximation Ratio ; Computer science; control theory; systems ; Constant Factor Approximation Algorithm ; Exact sciences and technology ; Minimum Latency ; Source Vertex ; Theoretical computing ; Total Latency</subject><ispartof>LATIN 2004: Theoretical Informatics, 2004, Vol.2976, p.423-433</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087252-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24698-5_46$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24698-5_46$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15758203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Farach-Colton, Martin</contributor><contributor>Farach-Colton, Martín</contributor><creatorcontrib>Jothi, Raja</creatorcontrib><creatorcontrib>Raghavachari, Balaji</creatorcontrib><title>Minimum Latency Tours and the k-Traveling Repairmen Problem</title><title>LATIN 2004: Theoretical Informatics</title><description>Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.</description><subject>Applied sciences</subject><subject>Approximation Ratio</subject><subject>Computer science; control theory; systems</subject><subject>Constant Factor Approximation Algorithm</subject><subject>Exact sciences and technology</subject><subject>Minimum Latency</subject><subject>Source Vertex</subject><subject>Theoretical computing</subject><subject>Total Latency</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540212584</isbn><isbn>3540212582</isbn><isbn>9783540246985</isbn><isbn>3540246983</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkMtOwzAQRc1TRKV_wCIblgY_Y1usEOIlFYFQWVuO67ShiRPsFKl_j9NWYhYz0r13RqMDwBVGNxghcauEhBRyhiBhhZKQa1YcgWmSaRJ3Gj8GGS4whpQydfLvYcIlOwUZoohAJRg9B5lKkdGmF2Aa4zdKhaXigmXg7q32dbtp85kZnLfbfN5tQsyNX-TDyuVrOA_m1zW1X-afrjd1aJ3PP0JXNq69BGeVaaKbHuYEfD09zh9e4Oz9-fXhfgZ7IsgAiZQldiZ1VSFLTJn-x84WqCJyQYTgyBZFibDlWDhiy8oqLJh1whTK4HJBJ-B6f7c30ZqmCsbbOuo-1K0JW4254JIgmnJkn4vJ8ksXdNl166gx0iNVnRhoqhMkvSOoR6ppiR6Oh-5n4-Kg3bhlnR-CaezK9IMLUVMkBeFEc6oZlfQPhKV0Mg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jothi, Raja</creator><creator>Raghavachari, Balaji</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Minimum Latency Tours and the k-Traveling Repairmen Problem</title><author>Jothi, Raja ; Raghavachari, Balaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-288b1ea88b9f0c2ab2461ec60f28d27750c66b01c517e2cbfc9174ce7a69a1bd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Approximation Ratio</topic><topic>Computer science; control theory; systems</topic><topic>Constant Factor Approximation Algorithm</topic><topic>Exact sciences and technology</topic><topic>Minimum Latency</topic><topic>Source Vertex</topic><topic>Theoretical computing</topic><topic>Total Latency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jothi, Raja</creatorcontrib><creatorcontrib>Raghavachari, Balaji</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jothi, Raja</au><au>Raghavachari, Balaji</au><au>Farach-Colton, Martin</au><au>Farach-Colton, Martín</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Minimum Latency Tours and the k-Traveling Repairmen Problem</atitle><btitle>LATIN 2004: Theoretical Informatics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>2976</volume><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540212584</isbn><isbn>3540212582</isbn><eisbn>9783540246985</eisbn><eisbn>3540246983</eisbn><abstract>Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24698-5_46</doi><oclcid>934978353</oclcid><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | LATIN 2004: Theoretical Informatics, 2004, Vol.2976, p.423-433 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15758203 |
source | Springer Books |
subjects | Applied sciences Approximation Ratio Computer science control theory systems Constant Factor Approximation Algorithm Exact sciences and technology Minimum Latency Source Vertex Theoretical computing Total Latency |
title | Minimum Latency Tours and the k-Traveling Repairmen Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Minimum%20Latency%20Tours%20and%20the%20k-Traveling%20Repairmen%20Problem&rft.btitle=LATIN%202004:%20Theoretical%20Informatics&rft.au=Jothi,%20Raja&rft.date=2004&rft.volume=2976&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540212584&rft.isbn_list=3540212582&rft_id=info:doi/10.1007/978-3-540-24698-5_46&rft_dat=%3Cproquest_pasca%3EEBC3087252_53_438%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540246985&rft.eisbn_list=3540246983&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087252_53_438&rft_id=info:pmid/&rfr_iscdi=true |