Minimum Latency Tours and the k-Traveling Repairmen Problem

Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jothi, Raja, Raghavachari, Balaji
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue
container_start_page 423
container_title
container_volume 2976
creator Jothi, Raja
Raghavachari, Balaji
description Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.
doi_str_mv 10.1007/978-3-540-24698-5_46
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15758203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087252_53_438</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-288b1ea88b9f0c2ab2461ec60f28d27750c66b01c517e2cbfc9174ce7a69a1bd3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1TRKV_wCIblgY_Y1usEOIlFYFQWVuO67ShiRPsFKl_j9NWYhYz0r13RqMDwBVGNxghcauEhBRyhiBhhZKQa1YcgWmSaRJ3Gj8GGS4whpQydfLvYcIlOwUZoohAJRg9B5lKkdGmF2Aa4zdKhaXigmXg7q32dbtp85kZnLfbfN5tQsyNX-TDyuVrOA_m1zW1X-afrjd1aJ3PP0JXNq69BGeVaaKbHuYEfD09zh9e4Oz9-fXhfgZ7IsgAiZQldiZ1VSFLTJn-x84WqCJyQYTgyBZFibDlWDhiy8oqLJh1whTK4HJBJ-B6f7c30ZqmCsbbOuo-1K0JW4254JIgmnJkn4vJ8ksXdNl166gx0iNVnRhoqhMkvSOoR6ppiR6Oh-5n4-Kg3bhlnR-CaezK9IMLUVMkBeFEc6oZlfQPhKV0Mg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087252_53_438</pqid></control><display><type>book_chapter</type><title>Minimum Latency Tours and the k-Traveling Repairmen Problem</title><source>Springer Books</source><creator>Jothi, Raja ; Raghavachari, Balaji</creator><contributor>Farach-Colton, Martin ; Farach-Colton, Martín</contributor><creatorcontrib>Jothi, Raja ; Raghavachari, Balaji ; Farach-Colton, Martin ; Farach-Colton, Martín</creatorcontrib><description>Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540212584</identifier><identifier>ISBN: 3540212582</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540246985</identifier><identifier>EISBN: 3540246983</identifier><identifier>DOI: 10.1007/978-3-540-24698-5_46</identifier><identifier>OCLC: 934978353</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Approximation Ratio ; Computer science; control theory; systems ; Constant Factor Approximation Algorithm ; Exact sciences and technology ; Minimum Latency ; Source Vertex ; Theoretical computing ; Total Latency</subject><ispartof>LATIN 2004: Theoretical Informatics, 2004, Vol.2976, p.423-433</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087252-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24698-5_46$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24698-5_46$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15758203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Farach-Colton, Martin</contributor><contributor>Farach-Colton, Martín</contributor><creatorcontrib>Jothi, Raja</creatorcontrib><creatorcontrib>Raghavachari, Balaji</creatorcontrib><title>Minimum Latency Tours and the k-Traveling Repairmen Problem</title><title>LATIN 2004: Theoretical Informatics</title><description>Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.</description><subject>Applied sciences</subject><subject>Approximation Ratio</subject><subject>Computer science; control theory; systems</subject><subject>Constant Factor Approximation Algorithm</subject><subject>Exact sciences and technology</subject><subject>Minimum Latency</subject><subject>Source Vertex</subject><subject>Theoretical computing</subject><subject>Total Latency</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540212584</isbn><isbn>3540212582</isbn><isbn>9783540246985</isbn><isbn>3540246983</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkMtOwzAQRc1TRKV_wCIblgY_Y1usEOIlFYFQWVuO67ShiRPsFKl_j9NWYhYz0r13RqMDwBVGNxghcauEhBRyhiBhhZKQa1YcgWmSaRJ3Gj8GGS4whpQydfLvYcIlOwUZoohAJRg9B5lKkdGmF2Aa4zdKhaXigmXg7q32dbtp85kZnLfbfN5tQsyNX-TDyuVrOA_m1zW1X-afrjd1aJ3PP0JXNq69BGeVaaKbHuYEfD09zh9e4Oz9-fXhfgZ7IsgAiZQldiZ1VSFLTJn-x84WqCJyQYTgyBZFibDlWDhiy8oqLJh1whTK4HJBJ-B6f7c30ZqmCsbbOuo-1K0JW4254JIgmnJkn4vJ8ksXdNl166gx0iNVnRhoqhMkvSOoR6ppiR6Oh-5n4-Kg3bhlnR-CaezK9IMLUVMkBeFEc6oZlfQPhKV0Mg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jothi, Raja</creator><creator>Raghavachari, Balaji</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Minimum Latency Tours and the k-Traveling Repairmen Problem</title><author>Jothi, Raja ; Raghavachari, Balaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-288b1ea88b9f0c2ab2461ec60f28d27750c66b01c517e2cbfc9174ce7a69a1bd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Approximation Ratio</topic><topic>Computer science; control theory; systems</topic><topic>Constant Factor Approximation Algorithm</topic><topic>Exact sciences and technology</topic><topic>Minimum Latency</topic><topic>Source Vertex</topic><topic>Theoretical computing</topic><topic>Total Latency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jothi, Raja</creatorcontrib><creatorcontrib>Raghavachari, Balaji</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jothi, Raja</au><au>Raghavachari, Balaji</au><au>Farach-Colton, Martin</au><au>Farach-Colton, Martín</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Minimum Latency Tours and the k-Traveling Repairmen Problem</atitle><btitle>LATIN 2004: Theoretical Informatics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>2976</volume><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540212584</isbn><isbn>3540212582</isbn><eisbn>9783540246985</eisbn><eisbn>3540246983</eisbn><abstract>Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24698-5_46</doi><oclcid>934978353</oclcid><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof LATIN 2004: Theoretical Informatics, 2004, Vol.2976, p.423-433
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15758203
source Springer Books
subjects Applied sciences
Approximation Ratio
Computer science
control theory
systems
Constant Factor Approximation Algorithm
Exact sciences and technology
Minimum Latency
Source Vertex
Theoretical computing
Total Latency
title Minimum Latency Tours and the k-Traveling Repairmen Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Minimum%20Latency%20Tours%20and%20the%20k-Traveling%20Repairmen%20Problem&rft.btitle=LATIN%202004:%20Theoretical%20Informatics&rft.au=Jothi,%20Raja&rft.date=2004&rft.volume=2976&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540212584&rft.isbn_list=3540212582&rft_id=info:doi/10.1007/978-3-540-24698-5_46&rft_dat=%3Cproquest_pasca%3EEBC3087252_53_438%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540246985&rft.eisbn_list=3540246983&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087252_53_438&rft_id=info:pmid/&rfr_iscdi=true