Minimum Latency Tours and the k-Traveling Repairmen Problem
Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an undirected graph G=(V,E) and a source vertex s ∈ V, the k-traveling repairman (KTR) problem, also known as the minimum latency problem, asks for k tours, each starting at s and covering all the vertices (customers) such that the sum of the latencies experienced by the customers is minimum. Latency of a customer p is defined to be the distance (time) traveled before visiting p for the first time. Previous literature on the KTR problem has considered the version of the problem in which the repairtime of a customer is assumed to be zero for latency calculations. We consider a generalization of the problem in which each customer has an associated repairtime. In this paper, we present constant factor approximation algorithms for this problem and its variants. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-24698-5_46 |