On the Graph-Density of Random 0/1-Polytopes
Let Xd,n be an n-element subset of {0,1}d chosen uniformly at random, and denote by Pd,n: = conv Xd,n its convex hull. Let Δd,n be the density of the graph of Pd,n (i.e., the number of one-dimensional faces of Pd,n divided by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \u...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Xd,n be an n-element subset of {0,1}d chosen uniformly at random, and denote by Pd,n: = conv Xd,n its convex hull. Let Δd,n be the density of the graph of Pd,n (i.e., the number of one-dimensional faces of Pd,n divided by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\binom{n}{2}$\end{document}). Our main result is that, for any function n(d), the expected value of Δd,n(d) converges (with d→ ∞) to one if, for some arbitrary ε> 0, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$n(d)\le (\sqrt{2}-\varepsilon)^d$\end{document} holds for all large d, while it converges to zero if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$n(d)\ge (\sqrt{2}+\varepsilon)^d$\end{document} holds for all large d. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-45198-3_27 |