Dynamic Load Balancing for I/O-Intensive Tasks on Heterogeneous Clusters

Since I/O-intensive tasks running on a heterogeneous cluster need a highly effective usage of global I/O resources, previous CPU- or memory-centric load balancing schemes suffer significant performance drop under I/O-intensive workload due to the imbalance of I/O load. To solve this problem, we deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High Performance Computing - HiPC 2003 2003, Vol.2913, p.300-309
Hauptverfasser: Qin, Xiao, Jiang, Hong, Zhu, Yifeng, Swanson, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since I/O-intensive tasks running on a heterogeneous cluster need a highly effective usage of global I/O resources, previous CPU- or memory-centric load balancing schemes suffer significant performance drop under I/O-intensive workload due to the imbalance of I/O load. To solve this problem, we develop two I/O-aware load-balancing schemes, which consider system heterogeneity and migrate more I/O-intensive tasks from a node with high I/O utilization to those with low I/O utilization. If the workload is memory-intensive in nature, the new method applies a memory-based load balancing policy to assign the tasks. Likewise, when the workload becomes CPU-intensive, our scheme leverages a CPU-based policy as an efficient means to balance the system load. In doing so, the proposed approach maintains the same level of performance as the existing schemes when I/O load is low or well balanced. Results from a trace-driven simulation study show that, when a workload is I/O-intensive, the proposed schemes improve the performance with respect to mean slowdown over the existing schemes by up to a factor of 8. In addition, the slowdowns of almost all the policies increase consistently with the system heterogeneity.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-24596-4_32