Inductive Invariants for Nested Recursion

We show that certain input-output relations, termed inductive invariants are of central importance for termination proofs of algorithms defined by nested recursion. Inductive invariants can be used to enhance recursive function definition packages in higher-order logic mechanizations. We demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krstić, Sava, Matthews, John
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that certain input-output relations, termed inductive invariants are of central importance for termination proofs of algorithms defined by nested recursion. Inductive invariants can be used to enhance recursive function definition packages in higher-order logic mechanizations. We demonstrate the usefulness of inductive invariants on a large example of the BDD algorithm Apply. Finally, we introduce a related concept of inductive fixpoints with the property that for every functional in higher-order logic there exists a largest partial function that is such a fixpoint.
ISSN:0302-9743
1611-3349
DOI:10.1007/10930755_17