Accumulating Composites and Improved Group Signing
Constructing practical and provably secure group signature schemes has been a very active research topic in recent years. A group signature can be viewed as a digital signature with certain extra properties. Notably, anyone can verify that a signature is generated by a legitimate group member, while...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constructing practical and provably secure group signature schemes has been a very active research topic in recent years. A group signature can be viewed as a digital signature with certain extra properties. Notably, anyone can verify that a signature is generated by a legitimate group member, while the actual signer can only be identified (and linked) by a designated entity called a group manager. Currently, the most efficient group signature scheme available is due to Camenisch and Lysyanskaya [CL02]. It is obtained by integrating a novel dynamic accumulator with the scheme by Ateniese, et al. [ACJT00].
In this paper, we construct a dynamic accumulator that accumulates composites, as opposed to previous accumulators that accumulated primes. We also present an efficient method for proving knowledge of factorization of a committed value. Based on these (and other) techniques we design a novel provably secure group signature scheme. It operates in the common auxiliary string model and offers two important benefits: 1) the Join process is very efficient: a new member computes only a single exponentiation, and 2) the (unoptimized) cost of generating a group signature is 17 exponentiations which is appreciably less than the state-of-the-art. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-40061-5_16 |