A Numerical Technique for Stability Analysis of Linear Switched Systems
In this paper the ray-gridding approach, a new numerical technique for the stability analysis of linear switched systems is presented. It is based on uniform partitions of the state-space in terms of ray directions which allow refinable families of polytopes of adjustable complexity to be examined f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper the ray-gridding approach, a new numerical technique for the stability analysis of linear switched systems is presented. It is based on uniform partitions of the state-space in terms of ray directions which allow refinable families of polytopes of adjustable complexity to be examined for invariance. In this framework the existence of a polyhedral Lyapunov function that is common to a family of asymptotically stable subsystems can be checked efficiently via simple iterative algorithms. The technique can be used to prove the stability of switched linear systems, classes of linear time-varying systems and Linear Differential Inclusions. We also present preliminary results on another related problem; namely, the construction of multiple polyhedral Lyapunov functions for specifying the existence of stabilising switching sequences. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-24743-2_42 |