SO(2)-Networks as Neural Oscillators

Using discrete-time dynamics of a two neuron networkw ith recurrent connectivity it is shown that for specific parameter configurations the output signals of neurons can be of almost sinusoidal shape. These networks live near the Sacker-Neimark bifurcation set, and are termed SO(2)-networks, because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pasemann, Frank, Hild, Manfred, Zahedi, Keyan
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using discrete-time dynamics of a two neuron networkw ith recurrent connectivity it is shown that for specific parameter configurations the output signals of neurons can be of almost sinusoidal shape. These networks live near the Sacker-Neimark bifurcation set, and are termed SO(2)-networks, because their weight matrices correspond to rotations in the plane. The discretized sinus-shaped waveform is due to the existence of quasi-periodic attractors. It is shown that the frequency of the oscillators can be controlled by only one parameter. Signals from the neurons have a phase shift of Π/2 and may be useful for various kinds of applications; for instance controlling the gait of legged robots.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-44868-3_19