The b-factor as a function of frequency and canopy type at H-polarization

For anticipated synergistic approaches of the L-band radiometer on the Soil Moisture and Ocean Salinity (SMOS) mission with higher frequency microwave radiometers such as the Advanced Microwave Scanning Radiometer (AMSR) (C-band), a reanalysis has been performed on the frequency dependence of the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2004-04, Vol.42 (4), p.786-794
Hauptverfasser: Van de Griend, A.A., Wigneron, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For anticipated synergistic approaches of the L-band radiometer on the Soil Moisture and Ocean Salinity (SMOS) mission with higher frequency microwave radiometers such as the Advanced Microwave Scanning Radiometer (AMSR) (C-band), a reanalysis has been performed on the frequency dependence of the linear relationship between vegetation optical depth (/spl tau//sub o/) and vegetation water content (W), given by /spl tau//sub o/=b/spl middot/W. Insight into the frequency dependence of the b-factor is important for the retrieval of surface moisture from dual- or multifrequency microwave brightness temperature observations from space over vegetation-covered regions using model inversion techniques. The b-values presented in the literature are based on different methods and approaches. Therefore, a direct comparison is not straightforward and requires a critical analysis. This paper confirms that when a large frequency domain is considered, the b-factor is inversely proportional to the power of the wavelength b=c/(/spl lambda/)/sup x/, which is in line with theoretical considerations. It was found that different canopy types could be separated into different groups, each with a different combination of values for log(c) and x, which characterize the linearized relationship log(b)=log(c)-x/spl middot/log(/spl lambda/). A comparison of ratios b/sub C//b/sub L/ (with C and L denoting C- and L-band, respectively) also resulted in basically the same groups.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2003.821889