Intrinsic Diameter and Curvature Integrals of Surfaces Immersed in ℝn
We prove that if Σ is a complete connected surface without boundary smoothly immersed in ℝn, then its intrinsic diameter satisfies the bound diamΣ < Cn volN(Σ), where N(Σ) ⊂ ℝn × Sn−1 is the manifold of unit normals to Σ and Cn is a universal constant depending only on n. In fact we establish a s...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2004-01, Vol.53 (1), p.269-296 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if Σ is a complete connected surface without boundary smoothly immersed in ℝn, then its intrinsic diameter satisfies the bound diamΣ < Cn volN(Σ), where N(Σ) ⊂ ℝn × Sn−1 is the manifold of unit normals to Σ and Cn is a universal constant depending only on n. In fact we establish a stronger bound, linear in the sum of the area of Σ and the L1 norms of its second fundamental form and Gauss curvature (in dimension n = 3 the two bounds are equivalent). |
---|---|
ISSN: | 0022-2518 1943-5258 |