Combining Pairwise Classifiers with Stacking
Pairwise classification is the technique that deals with multi-class problems by converting them into a series of binary problems, one for each pair of classes. The predictions of the binary classifiers are typically combined into an overall prediction by voting and predicting the class that receive...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pairwise classification is the technique that deals with multi-class problems by converting them into a series of binary problems, one for each pair of classes. The predictions of the binary classifiers are typically combined into an overall prediction by voting and predicting the class that received the largest number of votes. In this paper we try to generalize the voting procedure by replacing it with a trainable classifier, i.e., we propose the use of a meta-level classifier that is trained to arbiter among the conflicting predictions of the binary classifiers. In our experiments, this yielded substantial gains on a few datasets, but no gain on others. These performance differences do not seem to depend on quantitative parameters of the datasets, like the number of classes. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-45231-7_21 |