Evolving Evolutionary Algorithms Using Multi Expression Programming

Finding the optimal parameter setting (i.e. the optimal population size, the optimal mutation probability, the optimal evolutionary model etc) for an Evolutionary Algorithm (EA) is a difficult task. Instead of evolving only the parameters of the algorithm we will evolve an entire EA capable of solvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oltean, Mihai, Groşan, Crina
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding the optimal parameter setting (i.e. the optimal population size, the optimal mutation probability, the optimal evolutionary model etc) for an Evolutionary Algorithm (EA) is a difficult task. Instead of evolving only the parameters of the algorithm we will evolve an entire EA capable of solving a particular problem. For this purpose the Multi Expression Programming (MEP) technique is used. Each MEP chromosome will encode multiple EAs. An nongenerational EA for function optimization is evolved in this paper. Numerical experiments show the effectiveness of this approach.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-39432-7_70