Simplified PAC-Bayesian Margin Bounds

The theoretical understanding of support vector machines is largely based on margin bounds for linear classifiers with unit-norm weight vectors and unit-norm feature vectors. Unit-norm margin bounds have been proved previously using fat-shattering arguments and Rademacher complexity. Recently Langfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: McAllester, David
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theoretical understanding of support vector machines is largely based on margin bounds for linear classifiers with unit-norm weight vectors and unit-norm feature vectors. Unit-norm margin bounds have been proved previously using fat-shattering arguments and Rademacher complexity. Recently Langford and Shawe-Taylor proved a dimension-independent unit-norm margin bound using a relatively simple PAC-Bayesian argument. Unfortunately, the Langford-Shawe-Taylor bound is stated in a variational form making direct comparison to fat-shattering bounds difficult. This paper provides an explicit solution to the variational problem implicit in the Langford-Shawe-Taylor bound and shows that the PAC-Bayesian margin bounds are significantly tighter. Because a PAC-Bayesian bound is derived from a particular prior distribution over hypotheses, a PAC-Bayesian margin bound also seems to provide insight into the nature of the learning bias underlying the bound.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-45167-9_16