Simplified PAC-Bayesian Margin Bounds
The theoretical understanding of support vector machines is largely based on margin bounds for linear classifiers with unit-norm weight vectors and unit-norm feature vectors. Unit-norm margin bounds have been proved previously using fat-shattering arguments and Rademacher complexity. Recently Langfo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theoretical understanding of support vector machines is largely based on margin bounds for linear classifiers with unit-norm weight vectors and unit-norm feature vectors. Unit-norm margin bounds have been proved previously using fat-shattering arguments and Rademacher complexity. Recently Langford and Shawe-Taylor proved a dimension-independent unit-norm margin bound using a relatively simple PAC-Bayesian argument. Unfortunately, the Langford-Shawe-Taylor bound is stated in a variational form making direct comparison to fat-shattering bounds difficult. This paper provides an explicit solution to the variational problem implicit in the Langford-Shawe-Taylor bound and shows that the PAC-Bayesian margin bounds are significantly tighter. Because a PAC-Bayesian bound is derived from a particular prior distribution over hypotheses, a PAC-Bayesian margin bound also seems to provide insight into the nature of the learning bias underlying the bound. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-45167-9_16 |