Design of a class of nonlinear controllers via state dependent Riccati equations

In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2004-01, Vol.12 (1), p.133-137
Hauptverfasser: Erdem, E.B., Alleyne, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 133
container_title IEEE transactions on control systems technology
container_volume 12
creator Erdem, E.B.
Alleyne, A.G.
description In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by a combination of Lyapunov analysis and LaSalle's Principle. Accordingly, a relatively straightforward condition for global asymptotic stability of the closed-loop system is derived. This is one of the first global results available for this class of systems controlled by SDRE methods. The stability results are demonstrated on an experimental magnetic levitation setup and are found to provide a great deal of flexibility in the control system design.
doi_str_mv 10.1109/TCST.2003.819588
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_15523521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1268058</ieee_id><sourcerecordid>28887813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-79938e9dbe4a44ac515cd87e0dce2ff7be112a468b0e1965c248627a739ff8633</originalsourceid><addsrcrecordid>eNqN0U1rHDEMBuChNNA06b3Qiyk0Oc1Gtse2fCybTwi0pNuz8Xo0xWFib-zZQP99Z9lAoIeQkwR6JBBv03zmsOAc7Nlq-Wu1EABygdwqxHfNIVcKW0Ct3s89aNlqJfWH5mOt9wC8U8IcNj_PqcY_ieWBeRZGX-uuTTmNMZEvLOQ0lTyOVCp7ip7VyU_EetpQ6ilN7C6G4KfI6HE7l5zqcXMw-LHSp-d61Py-vFgtr9vbH1c3y--3begMTq2xViLZfk2d7zofFFehR0PQBxLDYNbEufCdxjUQt1oF0aEWxhtphwG1lEfN6f7upuTHLdXJPcQaaBx9orytzgLXGjo0szx5VQpENMjlG6BQGrid4df_4H3eljS_6xClktYCzgj2KJRca6HBbUp88OWv4-B2kbldZG4XmdtHNq98e77ra_DjUHwKsb7sKSWkEnx2X_YuEtHLWGgEhfIfj5-ePw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883539908</pqid></control><display><type>article</type><title>Design of a class of nonlinear controllers via state dependent Riccati equations</title><source>IEEE Electronic Library (IEL)</source><creator>Erdem, E.B. ; Alleyne, A.G.</creator><creatorcontrib>Erdem, E.B. ; Alleyne, A.G.</creatorcontrib><description>In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by a combination of Lyapunov analysis and LaSalle's Principle. Accordingly, a relatively straightforward condition for global asymptotic stability of the closed-loop system is derived. This is one of the first global results available for this class of systems controlled by SDRE methods. The stability results are demonstrated on an experimental magnetic levitation setup and are found to provide a great deal of flexibility in the control system design.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2003.819588</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Control ; Control systems ; Control systems design ; Control theory. Systems ; Error correction ; Exact sciences and technology ; Flexibility ; Magnetic analysis ; Mathematical analysis ; Nonlinear control systems ; Nonlinear equations ; Nonlinear systems ; Nonlinearity ; Performance analysis ; Riccati equation ; Riccati equations ; Sliding mode control ; Stability ; Stability analysis</subject><ispartof>IEEE transactions on control systems technology, 2004-01, Vol.12 (1), p.133-137</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-79938e9dbe4a44ac515cd87e0dce2ff7be112a468b0e1965c248627a739ff8633</citedby><cites>FETCH-LOGICAL-c478t-79938e9dbe4a44ac515cd87e0dce2ff7be112a468b0e1965c248627a739ff8633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1268058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27910,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1268058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15523521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Erdem, E.B.</creatorcontrib><creatorcontrib>Alleyne, A.G.</creatorcontrib><title>Design of a class of nonlinear controllers via state dependent Riccati equations</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by a combination of Lyapunov analysis and LaSalle's Principle. Accordingly, a relatively straightforward condition for global asymptotic stability of the closed-loop system is derived. This is one of the first global results available for this class of systems controlled by SDRE methods. The stability results are demonstrated on an experimental magnetic levitation setup and are found to provide a great deal of flexibility in the control system design.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Control</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Control theory. Systems</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Flexibility</subject><subject>Magnetic analysis</subject><subject>Mathematical analysis</subject><subject>Nonlinear control systems</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Performance analysis</subject><subject>Riccati equation</subject><subject>Riccati equations</subject><subject>Sliding mode control</subject><subject>Stability</subject><subject>Stability analysis</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1rHDEMBuChNNA06b3Qiyk0Oc1Gtse2fCybTwi0pNuz8Xo0xWFib-zZQP99Z9lAoIeQkwR6JBBv03zmsOAc7Nlq-Wu1EABygdwqxHfNIVcKW0Ct3s89aNlqJfWH5mOt9wC8U8IcNj_PqcY_ieWBeRZGX-uuTTmNMZEvLOQ0lTyOVCp7ip7VyU_EetpQ6ilN7C6G4KfI6HE7l5zqcXMw-LHSp-d61Py-vFgtr9vbH1c3y--3begMTq2xViLZfk2d7zofFFehR0PQBxLDYNbEufCdxjUQt1oF0aEWxhtphwG1lEfN6f7upuTHLdXJPcQaaBx9orytzgLXGjo0szx5VQpENMjlG6BQGrid4df_4H3eljS_6xClktYCzgj2KJRca6HBbUp88OWv4-B2kbldZG4XmdtHNq98e77ra_DjUHwKsb7sKSWkEnx2X_YuEtHLWGgEhfIfj5-ePw</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Erdem, E.B.</creator><creator>Alleyne, A.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>200401</creationdate><title>Design of a class of nonlinear controllers via state dependent Riccati equations</title><author>Erdem, E.B. ; Alleyne, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-79938e9dbe4a44ac515cd87e0dce2ff7be112a468b0e1965c248627a739ff8633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Control</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Control theory. Systems</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Flexibility</topic><topic>Magnetic analysis</topic><topic>Mathematical analysis</topic><topic>Nonlinear control systems</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Performance analysis</topic><topic>Riccati equation</topic><topic>Riccati equations</topic><topic>Sliding mode control</topic><topic>Stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdem, E.B.</creatorcontrib><creatorcontrib>Alleyne, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erdem, E.B.</au><au>Alleyne, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a class of nonlinear controllers via state dependent Riccati equations</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2004-01</date><risdate>2004</risdate><volume>12</volume><issue>1</issue><spage>133</spage><epage>137</epage><pages>133-137</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by a combination of Lyapunov analysis and LaSalle's Principle. Accordingly, a relatively straightforward condition for global asymptotic stability of the closed-loop system is derived. This is one of the first global results available for this class of systems controlled by SDRE methods. The stability results are demonstrated on an experimental magnetic levitation setup and are found to provide a great deal of flexibility in the control system design.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2003.819588</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2004-01, Vol.12 (1), p.133-137
issn 1063-6536
1558-0865
language eng
recordid cdi_pascalfrancis_primary_15523521
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymptotic properties
Computer science
control theory
systems
Control
Control systems
Control systems design
Control theory. Systems
Error correction
Exact sciences and technology
Flexibility
Magnetic analysis
Mathematical analysis
Nonlinear control systems
Nonlinear equations
Nonlinear systems
Nonlinearity
Performance analysis
Riccati equation
Riccati equations
Sliding mode control
Stability
Stability analysis
title Design of a class of nonlinear controllers via state dependent Riccati equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20class%20of%20nonlinear%20controllers%20via%20state%20dependent%20Riccati%20equations&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Erdem,%20E.B.&rft.date=2004-01&rft.volume=12&rft.issue=1&rft.spage=133&rft.epage=137&rft.pages=133-137&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2003.819588&rft_dat=%3Cproquest_RIE%3E28887813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883539908&rft_id=info:pmid/&rft_ieee_id=1268058&rfr_iscdi=true