Design of a class of nonlinear controllers via state dependent Riccati equations
In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2004-01, Vol.12 (1), p.133-137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this brief, infinite-horizon nonlinear regulation of second-order systems using the State Dependent Riccati Equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state-dependent algebraic Riccati equation is solved analytically. As a result, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by a combination of Lyapunov analysis and LaSalle's Principle. Accordingly, a relatively straightforward condition for global asymptotic stability of the closed-loop system is derived. This is one of the first global results available for this class of systems controlled by SDRE methods. The stability results are demonstrated on an experimental magnetic levitation setup and are found to provide a great deal of flexibility in the control system design. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2003.819588 |