Low-complexity data reusing methods in adaptive filtering
Most adaptive filtering algorithms couple performance with complexity. Over the last 15 years, a class of algorithms, termed "affine projection" algorithms, have given system designers the capability to tradeoff performance with complexity. By changing parameters and the size/scale of data...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2004-02, Vol.52 (2), p.394-405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most adaptive filtering algorithms couple performance with complexity. Over the last 15 years, a class of algorithms, termed "affine projection" algorithms, have given system designers the capability to tradeoff performance with complexity. By changing parameters and the size/scale of data used to update the coefficients of an adaptive filter but without fundamentally changing the algorithm structure, a system designer can radically change the performance of the adaptive algorithm. This paper discusses low-complexity data reusing algorithms that are closely related to affine projection algorithms. This paper presents various low-complexity and highly flexible schemes for improving convergence rates of adaptive algorithms that utilize data reusing strategies. All of these schemes are unified by a row projection framework in existence for more than 65 years. This framework leads to the classification of all data reusing and affine projection methods for adaptive filtering into two categories: the Kaczmarz and Cimmino methods. Simulation and convergence analysis results are presented for these methods under a number of conditions. They are compared in terms of convergence rate performance and computational complexity. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2003.821338 |