Low-complexity data reusing methods in adaptive filtering

Most adaptive filtering algorithms couple performance with complexity. Over the last 15 years, a class of algorithms, termed "affine projection" algorithms, have given system designers the capability to tradeoff performance with complexity. By changing parameters and the size/scale of data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2004-02, Vol.52 (2), p.394-405
Hauptverfasser: Soni, R.A., Gallivan, K.A., Jenkins, W.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most adaptive filtering algorithms couple performance with complexity. Over the last 15 years, a class of algorithms, termed "affine projection" algorithms, have given system designers the capability to tradeoff performance with complexity. By changing parameters and the size/scale of data used to update the coefficients of an adaptive filter but without fundamentally changing the algorithm structure, a system designer can radically change the performance of the adaptive algorithm. This paper discusses low-complexity data reusing algorithms that are closely related to affine projection algorithms. This paper presents various low-complexity and highly flexible schemes for improving convergence rates of adaptive algorithms that utilize data reusing strategies. All of these schemes are unified by a row projection framework in existence for more than 65 years. This framework leads to the classification of all data reusing and affine projection methods for adaptive filtering into two categories: the Kaczmarz and Cimmino methods. Simulation and convergence analysis results are presented for these methods under a number of conditions. They are compared in terms of convergence rate performance and computational complexity.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2003.821338